Revision: Function definition

| Australian
== National
=7 University

name

def change_in_percent (old, new):
iff = new - old
eturn (diff / old) * 100

spaces block

* A function definition consists of a name and a body (a block)
* The extent of the block is defined by indentation, which must be the same
for all statements of a block
* Standard indentation is 4 spaces

* This example has parameters
* Parameters are specified in the function call, and are passed to the code block

* A custom function must be defined before it can be called

Revision: Flow of execution

| Australian
<= National
<=7 University

* Calling a function will interrupt the processive flow of program execution

* Calling a function causes the execution to skip to that function and
continue executing from that position

e: ")

\ string(the_string):
a)

eturh Ten (the sEr

aput_namej:
leulate_length_of_string(input_name)
+ ilnput_name + “. Your name is " + str(name_length) + " characters in length.")

intzraction_name = ask_name()
printt_greeting(interaction_name)

interact()

* Execution continues until the end of the function is reached (and it
returns to executing where the call was originally made)

Revision: Function parameters and return

valiie PR

valruc =7 University
parameters

def change_in percent (old, new):
diff = new - old
return (diff / old) = 100

* Function (formal) parameters are (variable) names
* These variables can be used only in the function body

* Parameter values will be set only when the function is called

* return is a statement
* when executed, it causes the function call to end, and return the value of the

.y

expression
Revision: the call stack

* The ‘to-do list’ of where to come back to after each current function
call is called the (execution or call) stack

* When evaluation of a function call begins, the current instruction
sequence is put ‘on hold’ while the expre55|on is evaluated —and the
function calls begin to ‘stack up’

* Graphically:

Intro to Scope

COMP1730/3730

Chapter 3 : Sweigart, Automate the boring stuff with Python,

Or
| Raeeit™ Section 9: https://docs.python.org/3/tutorial/classes.html#python-

= U it
niversity scopes-and-namespaces

Sco Pe€ - Sweigart, Automate the Boring Stuff with Python, Ch 3

| Australian
==/ National
=7 University

* We haven’t talked yet about scope — this is important

* So far, we have assumed that all defined variables are accessible all
the time — this is known as global scope

* But global scope becomes hazardous as:
* A program gets larger
* Includes code that comes from other developers (you might both use the
same variable name)
* The parameter variables within a single function are local to the code
block. If you try to access one of these outside the function code
block, you will get an error.

Reading: Scope N
= L’\J‘git\ilg?sailty

* Covered in Think Python and ItSPwP, but..

* A better introduction is in: Automate the Boring Stuff with Python,
Chapter 3, from Section ‘Local and Global Scope’ until the end of the
chapter

* Remember: you have access to the Safari/O’Reilly bookstore through
the ANU library: https://www.oreilly.com/library-access/
* Search for ‘Automate the Boring Stuff with Python’

Graphica”y: = Australian

University
X scope.py Program: scope.py

def pri H

gen 53" Global

print('In print_gene: ' + gene_name)

gene_name = ‘BRCA2’
gene_name = 'Unknown' H . 1
print('In print_protein: ' + protein_id + ' ' + gene_name) Function: prlnt_gene()
Local

gene_name = 'BRCA2'
print_gene() _
print('In main: ' + gene_name) gene_name = ‘p53’

print_protein()

Function: print_protein()

Local

protein_id = ‘TP53’
gene_name = ‘Unknown’|

Within a function, parameters are local

Australian

S
* Variables created/assigned in a function (including parameters) are
local to that function:
* Local variables have scope limited to the enclosing block
* The interpreter uses a new namespace for each function call

 Local variables that are not parameters are undefined before the first
assignment in the function body. Then remain local to the function block

* Variables with the same name used outside the function are unchanged after
the call

* Within a function, you can still access variables in the global scope

* But, within function local scope, you cannot access the local scopes
of other functions

The call stack

<=/ National
=7 University

import math
def deg-to.rad(x):

[N

def sin.of.deg(x):

w

ans=sin.of.deg(23)
5 x.inrad-degto.rad(23

IS

7 x.inrad=0.4014

8 return math.sin(0.4014)
9 ans = 0.3907
10 print (ans)

Scope - why?

==/ National

=7 University

* There are very good reasons why every section of code should not be
able to access the variables controlled by other sections.

* For one thing, as your program gets bigger, the namespace of the program
will start to get crowded.

* You might be using the same variable name for two different things.

* If you are using code from other developers (like importing functions), they
might be using the same variable names as your program — but for different
things

* |t makes good sense to compartmentalise variable scope, to avoid
namespace-collisions

The call stack and scope

Australian
National

|6 return 23matn.pi/180

stack depth

..

=7 University

Global frani/—v module instance
math

function

degtorad o deg to_rad(x)

sin_of_deg L._\mnwon

sin_of_deg(x)

(Image from pythontutor.com)

The call stack and scope

Australian
National
University

Australian
== National
=7 University

The call stack and scope

Global frame > module instance Global frame > module instance
math |- function mah |- _ funcion
deg_to_rad |* " deg_to_rad(x) deg_to_rad |- deg_to_rad(x)
sin_of_deg L‘ function sin_of deg L’ . function
“sin_of_deg(x) _ sin_of_deg(x)
sin_of deg sin_of deg
x (28 <z
deg_to_rad
xm
Fem o.4014

(Image from pythontutor.com) (Image from pythontutor.com)

- The call stack and scope -
National ﬁ:it\irg?sailty

University

The call stack and scope

Global frame > module instance Global frame /Pmoﬂu\e instance
math L _ function math I; function
deg_to_rad | deg_to_rad(x) deg_to_rad e deg_to_rad(x)
sin_of_deg L' Aincton Shiciiceg l—._\mnwon
answer | 0.3907 sin_of_deg(x)

sin_of deg(x)
sin_of_deg
x |23
x_in_rad | 0.4014

Retumn
vale | 0-3907

(Image from pythontutor.com) (Image from pythontutor.com)

Abstraction & Interfaces o

==/ National

=7 University

* Imagine if when we write very large programs, that we needed to
understand every line of code that our code is built on?
* It would be terrible! Nothing complicated could get done easily. Slow!

F un Ct|o Na | Abst ra Ct]O N * In the first lecture, you saw how to open a file and train a basic ML

model
COMP1730/6730 * General understanding is necessary (yes!), but detailed understanding
of the implementation is not
Think Python Ch 4 (Encapsulation, Generalization, Interface Design) and * We rely on abstraction of details
Ch 6 (Leap of Faith)
_ * We implement code and software libraries that only require an
= Ravorat” understanding of the interface

=7 University

* When we write functions, we should make them intuitive to
provide this interface

Interfaces (Think Python, Ch. 4) N More complicated: Python as a toolbox
= ften” S Daverchy
* Providing a simple interface to a complex task is the great value of I
software libraries. Other people write code that you don’t know in s scr ol oo M
detail — but you can do the same tasks, with much less effort. T A P D GG
* Before long, you will be writing code where you didn’t look at every crs. Wt xe"Sotvent AccessiAility", ya’8. Foctor", datammutations, 11t e T
line of the functions and libraries that you rely on. = mitacions itecle:, 61] varuee 5 6 ; ’
* Ch 6 of Think Python calls this the ‘Leap of faith’: e et
Leap of Faith ; : prztl'll‘l[‘i:an?.%gl]ltl(predic(ion fe1))

Mutation_Cat
.1

Following the flow of execution is one way to read programs, but it can quickly
become overwhelming. An alternative is what I call the “leap of faith”. When you
come to a function call, instead of following the flow of execution, you assume

that the function works correctly and returns the right result.

00 05 10
Solvent_Accessibility

* This is abstraction. Much of the detail in your software remains
abstract. You are now thinking about code at a higher level.

Turtle graphics

https://docs.python.org/3/library/turtle.html

turtle — Turtle graphics

Table of Contents
turtle — Turte

Source code: Lib/turtle.oy

Introduction

in Python, trtle graphics provides a representation of a

sheet of paper on the floor.

It's an effective and well-proven way for learners to en-
counter programming concepts and interaction with
software, as it provides instant, visible feedback. It lso

. provides convenient access to graphical output in gen-
enl

Turtle drawing was originally created as an educational
1001, t0 be used by teachers in the classroom. For the
programmer who needs to produce some graphical out-

troducing more complex or external ibraries into their
work.

Tutorial

put it can be a way to do that without the overhead of in-

Turtle graphics is an implementation of the popular geometric drawing tools introduced in Logo, de-
veloped by Wally Feurzelg, Seymour Papert and Cynthia Solomon in 1967.

physical “turtle” (a ltle robot with a pen) that draws ona Turtle star

Turtle can draw intricate shapes using
programs that repeat simple moves.

— % '

New users should start here. In this tutorial we'll explore some of the basics of turtle drawing.

Abstraction —a drawing example

Australian
==/ National

Drawing shapes — a square

Luke Taylor, from https://www.youtube.com/watch?v=lyqTY4q16iw

Australian

<= National
= University

* By writing a draw_square function, we can encapsulate the

complexity individual drawing commands.

* And we can add parameters

turtle

juare (side_dim):

Draws a square of side length defined by side_dim'"'

turtle.forward(side_dim)
turtle. right(90)
turtle. forward(side_dim)
turtle. right(90)
turtle. forward(side_dim)
turtle. right(90)
turtle. forward(side_dim)
turtle. right(90)

draw_square(100)

Code_L4_2.py

* Let’s draw a shape - a square.

O X console2iA

Pyth

information.

L]

* Boring, processive, repetitive code.

Drawing a bigger structure with functions.

IPython 8.15.0

impor

: turtle.
¢ turtle.
: turtle.
: turtle.
: turtle.
: turtle.
¢ turtle.

: turtle.

3.9.13 (main, Aug 25 202
Type "copyright", "credits" or

=7 University

' for more

—— An enhanced Interactive Python.

turtle
forward(100)
right(90)
forward(100)
right(90)
forward(100)
right(90)

forward(100)

right(90)

1Python Consale. History

Code_L4_1.py

| Australian
<=/ National

* Write another function to draw

multiple squares to make a grid
* Parameters to give size and number

of cells:

= University

gth defined
i
forward (side_dim)
ght(90)

. forward(side_dim)

. right(90)

(cells, side_din;
grid of

j 2 :
draw_square(side_dim)
turtle. forward(side_dim)

turtle.penup()
turtle.right(180)
turtle. forward(side_dimxcells)

turtle. left(90)
turtle. forward(side_dim)
turtle. left(90)
turtle. pendown ()

draw_grid(3,100)

Code_L4_3.py

Abstract functions allow easy extensibility ...

== National

* What if we now need to draw each
cell as a circle —there is a function for
turtle.circle () :

(cells, side_dim, draw_shape, adjust=1):

i in range(cells):

ge(cells):

endown ()
draw_shape(side_dim)
turtle.penup()
turtle. forward(side_dimxadjust)

turtle.penup()

turtle. left(180)

turtle. forward(side_dimkcells*adjust)
turtle. left(90)

turtle. forward(side_dimxadjust)
turtle.left(90)

turtle.pendown ()

draw_grid(3, 40, turtle.circle, 2)

Things the robot does:

=7 University

* Move left/right along a shelf with boxes on it:

s U

* Move gripper up and down:

Code_L4_4.py
- Australian
== National
<=7 University

.,,,,,’

Example: The Robot

| Australian
==/ National
=7 University

. .
It can: ¢ Lift mechanical arms up and down

* Move * Sense position
* Grip boxes * Bedriven by a python code library

Open and close the gripper:

-] Australian
== National
<=7 University

Folded Open Closed

* When moving along the shelf of boxes, the gripper needs to be folded
to avoid hitting the boxes

* Folding and unfolding the gripper may hit boxes, so important to lift
the gripper up first

A look at a Robot ‘SEE:VEH:E?#EF ; : .
e) The Robot Simulator

. | Australian -] Australian

== National == National

=7 University =7 University

The box sensor
The gripper ! Q

(closed) f |
I

lass:
¢ This is the RPCRobot class

that can be found in
robot.py from the labs

* Class RPCRobot
¢ Global attribute defaults
* init method
* Methods:
« lift up
* lift down
* drive right
* Etc...

o

The shelf

Close.

The robot library _— The robot library _—

== National <= National

=7 University =7 University

>>> import robot .
Move the lift up one step:

>>> robot.lift up()

Move the lift down one step:

>>> robot.lift _down ()
Change gripper position:

>>> robot.gripper_to_open ()

Start new simulation:
>>> robot.init ()

Start simulation with larger area:
>>> robot.init (width = 11, height = 6)

Start simulation with random boxes:

>>> robot.init (width = 11, height = 6, >>> robot.gripper_to_closed ()
boxes = "random") >>> robot.gripper_to_folded ()
Drive right/left one step: * |f the robot hits a box, no
>>> robot.drive right () command works until a new
: @
>>> robot.drive_left () simulation is started. —

How to pick up a box?

| Australian
== National

* How to pick up a box without

hitting the box(es) next to it?
robot.lift up ()
robot.gripper_to_open/()
robot.lift_down ()
robot.gripper_to_closed()
robot.lift up ()

A program is a sequence of
instructions.

Abstraction with functions

=7 University

| Australian
==/ National

def grasp-box_on_shelf():
robot.lift up ()
4 robot.gripper_to_open ()
Spacesrobot . 1ift_down ()

robot.lift up()

=7 University

* We only need to know what a function does. We don’t need to know
how it does it:

robot.gripper to.closed()

* And the idea is, there is a high-level function to do all the necessary

def release_and pickup next () :

robot.gripper_to_open ()
robot.lift_down ()

robot .gripper_to_closed()

robot.lift up()

How to build a tower of boxes?

Australian
National

..

University

%

H-D H B o
%

He-D B E B O

robot.init (width = 7, boxes = "flat")
robot.drive_right ()
robot.lift_up()

robot .gripper_to_open ()
robot.lift_down()
robot.gripper_to_closed()
robot.lift_up ()
robot.drive_right ()
robot.drive_right ()
robot .gripper_to_open ()
robot.lift_down ()
robot.gripper_to_closed ()
robot.lift_up ()
robot.drive_right ()
robot.drive_right ()
robot .gripper_to_open ()
robot.lift_down ()

How to build a tower of boxes?

* This quickly gets very tedious!

| Australian
== National

<=7 University

%

e ®
%

He-B B B)
_)

He ®

robot.init (width = 9, boxes = "flat")
robot.drive_right ()

grasp-box_on_shelf ()
move_to_next_stack ()
release_and-pickup-next ()
move_to_next_stack ()
release_and_pickup_next ()
move_to_next_stack ()
release_and_pickup_next ()
move_to_next_stack ()
robot .gripper_to_folded()
robot.lift_down ()

* Much better!
* And you needn’t stop there:

build tower () ?

Exercises

Australian

==/ National
=7 University

* Exercises in this week’s practical lab

Reading

Think Python Ch 4 (Encapsulation, Generalization, Interface Design) and
Ch 6 (Leap of Faith)

