Announcements

Australian
National
University

* Please fill out the Week 2/3 Course Survey on Wattle
* Survey comments allow us to actively adjust the course as it is taught

* Homework 2 has been released and it is due next Sunday night
(04/03/24)

* Quiz for Week 3 also released
* Class representatives have been chosen

Course representatives

-] Australian

== National
=7 University

* COMP1730:
e Clarissa Blum
e Conor Aloisi

* COMP6730:
* ThiDo
* Xi (Darcy) Ding

Thi Do Xi (Darcy) Ding

* Contact details are posted on Wattle site

Lecture Roadmap

| Australian

== National
=7 University

* Intro to Programming
e Variables

* Functions
* Definitions
* The stack
* Scope
* Functional abstraction
* Flow control — branching, recursion and iteration
* branching
* recursion
* jteration

* Strings

* Lists

e Code quality

* FilelO

* Modules & Classes

Example: Neural networks

[- Australian
=/ National

=7 University

A simple neural network * Neural networks are mathematical
input hidden output representations that learn the relationship
layer layer layer between input and output values

* Each node represents an artificial neuron

* The arrows represent connections
between the outputs of one node and the
input to another

* The connections have different weights —
represented by thickness of the arrows

* The inputs and the weights across the
network can be used to calculate the
(source: wikipedia) Output Value

Calculation of the output from a single neurgn

ﬁustrallfn
—~<| Nationa
& University

* This is a single ‘neuron’

* |t has four inputs, with four
weights

(Inputs) f s o ¢ And d biaS faCtor
pred

(Activation function) * These are summed in the green
S (Summation function) node

* The sum is passed through an
activation function

fivation 7 A * Activation function is the
activation f(x) = = sigmoid function
(sigmoid function) * Output is Ypreq

(source: towardsdatascience.com)

Calculating a simple neuron, simply

activation

Australian
National
University

ypred

Example to describe activity of a neuron
in a neural network
import math

input signals

x1l = 0.7

X2 = 0.43

weights of arrows
wl = 3.2

w2 = 1.5

bias to modify output independent of inputs
bias = —10

summation = wlxxl + w2*x2 + bias
output = 1/(1l+math.exp(—summation))

print(summation, " ", output)

Re-writing to use functions

%] Australian

<=/ National
=~ University

* Let’s try to recode this as a function that takes the inputs and
produces the output of a single neuron

import math

weights of arrows
wl = 3.2
w2 = 1.5

bias to modify output independent of inputs
bias = —10

def summation(x1l, x2):
return wlxxl + w2*xx2 + bias

def neuron_output(xl, x2):
total = summation(x1l, x2)
return 1/(1l+math.exp(—total))

print(neuron_output (0.7, 0.43))

Passing functions to functions

Australian

~—=-/ National

=7 University

import math

weights of arrows

wl = 3.2

w2 = 1.5

bias to modify output independent of inputs
bias = —10

def sigmoid(x):
return 1/(1+math.exp(—x))

def neuron_output(xl, x2, activation):
total = wlxxl + w2%*x2 + bias
return activation(total)

print(neuron_output (0.7, 0.43, sigmoid))

Functional abstraction

* Increased abstraction makes this scalable to more complex networks:

oW

W2

W3

o

RelLU

RelLU

Sigmoid

Branching

COMP1730/COMP6730

Reading: Textbook chapter 5 : Alex Downey, Think Python, 2" Edition
(2016) from ‘Boolean expressions’ to ‘Nested conditionals’

Australian
National
University

Program control flow

Australian
National
University

 Sequential program execution:

statement
statement
statement
statement

* The python interpreter always
executes instructions
(statements) one at a time in
seguence

Program control flow

 With functions and the stack:

(statement
a_function ()

def a_function|() :
statement
statement

return statement

éstatement

* Function calls ‘insert’ a function
body into this sequence, but the
sequence of instructions remains
invariably the same

Australian
National
University

Flow control: i f

%] Australian

<=/ National
=7 University

 The 1f statement evaluates whether a statementis True or False,
then does something depending on the answer:

if x > 0:

print('x is positive')

Branching program flow

Australian
National
University

* Depending on the outcome of a test, the program executes one of
two alternative branches:

if test: if test:
statement statement
statement OR statement

statement Estatement

Example

%] Australian

<=/ National
=~ University

e The 1f statement

Code blocks (reminder)

Australian
National
University

e A block is a (sub-)sequence of Blocks with indentation are a
statements python oddity

* A block must contain at least one ¢ (Almost) Every programming
statement language has a way of grouping

statements into blocks

* For example, in C, Java and many
others:

* In python, a block is delimited by
indentation

* All statements in the block must be
preceded by the same number of
spaces/tabs (standard is 4 spaces) }

* A block can include nested blocks
(1f’s, etc)

if (expression) {
block

The ‘==" operator (reminder)

University

* Unlike the ‘=" operator, the ‘== evaluates two values for equality

* The return value of this operator is a Boolean value, depending on the
statement being evaluated

>>> § == §
True
>>> 5 == 6
False

Downey (2015) Think Python, 2" Ed.

Boolean expressions (reminder)

National
University

* A Boolean expression evaluates to either True or False. Note
these are keywords in Python.

e A Boolean variable contains True or False values.
* Boolean values are returned by comparison operators (==, 1=, <, >,
<=, >=) and a few more

e Boolean operators (and, or and not) allow comparison of Boolean
values (next slide)

* Warning #1: Where a truth value is required, python automatically
converts any value to type bool, but it may not be what you

expected

* Warning #2: Don’t use arithmetic operators (+, =, *, /) on Boolean
values

Boolean operators

Australian
National
University

* The operators and, or and not combine truth values:

a and b True if a and b both evaluate to True

a or b True if at least one of a and b evaluates
to True

not a True if a evaluatesto False

* Boolean operators have lower precedence than comparison operators
(>, <, >=, <=, ==, =) - which have lower precedence than arithmetic

operators (*, /, +, -)

Chaining operators: and, or and not

Australian
National
University

* These logical operators are a means of chaining together logical
statements:

e And: x > 0 and x < 10 |
n%2 == 0 or n%3 == 0

* Or:

* Not: Aot (x > ¥)

* There are no limits to how these might be put together.

Example

%] Australian

<=/ National
=7 University

* The if statement with chained operators

Back to i f: alternative execution

-] Australian

== National
=7 University

e Sometimes called an ‘i f-else’ statement:

Branching program flow

[- Australian
=/ National

=~ University

* Depending on the outcome of a test, the program executes one of
two alternative branches:

if test: if test:
statement statement
statement statement

else: OR else:
statement statement
statement statement

statement statement

Example

%] Australian

<=/ National
=~ University

e The 1 f—else statement

Nested conditionals

[- Australian
=/ National

=~ University

* You can nest conditional statements within another conditional
statements:

if x == y:
print('x and y are equal')
else:
if x < y:
print('x is less than y')
else:

print('x is greater than y')

Downey (2015) Think Python, 2" Ed.

elif:switches

Australian
National
University

* And these can be chained together with e11 f to make ‘chained
conditionals’:

if x < y:

print('x is less than y')
elif x > y:

print('x is greater than y')

else:

Downey (2015) Think Python, 2" Ed.

print('x and y are equal')

* When including an el se, it must be at the end of the chain. But
including a final else is optional

1f-elif-else

=] Australian
==/ National
=7 University

Example

%] Australian

<=/ National
=~ University

e The if-elif-else statement

Multiple return statements with 1 £

[- Australian
=/ National

=7 University

* The return statement causes execution to leave the function block
and return to where a function call was made

* There can be multiple return statements in a single function

>>> def commentary(color):
if color == 'red':
return "It's a tomato."
elif color == "green":
return "It's a green pepper."
elif color == 'bee purple':
return "I don't know what it is, but only bees can see it."
else:

return "I've never heard of the color " + color +

>>>

Lubanovic (2019) Introducing Python

Exe rC I SeS Australian

National
University

* Complete Exercises 5-1, 5-2 and 5-3 of Think Python.

Reading

* Chapter 5 of Think Python from ’‘Boolean expressions’ to ‘Nested conditionals’ AND/OR
 Section 4.2 of Intro to Sci Prog with Python

Testing and assertions

COMP1730/COMP6730

Function testing

Australian
National
University

* A function makes a logical unit for
testing:

* Documented input requirements
* Expected output

>>> change_in percent (1, 2)

100.0
* Testing can run a large variety of >>> change in percent (2, 1)
cases to ensure correct input ;ig Oh | Co g
produces expected output o77 changednpercent(l, L)
* With lots of testing will identify >Zgocgange—in—Percent<lr -1)
gdge—cases - try a range of typical »>> change.inpercent (0, 1)
Input arguments: ZeroDivisionError
 values equal to/less than/greater than
Zero

* very large and small values
 values of equal and opposite signs

Testing code: assert

Australian
National
University

* Why is testing so important?
* |In a large code-base, tests keep a project within design parameters
» Testing and fixing bugs can mean that routine code releases are _less_ stressful.

 Sanity checks find bugs introduced during development

* Routine checking that developing one part of the codebase doesn’t cause other
parts to stop working

* Or worse, silently start doing the wrong thing

 Testing that a function returns an expected value for standard input is
common.

e Basis of unit tests

* And, we use the assert statement to help mark your exams.

assert statement

National
University

* An assertion perfor ity check that something that should be

True isactually True

* Unlike an i £ statement, assert will do nothing if the expression is
True

 assert will only do something if the expression evaluated is False
* What is does is raise and AssertionError !

if
jalue = ll value :/Z:L
if value > 0: assert value == 1,(“Value noE‘I\

Oprint (“Walue is positive”) - -

assert

Example

%] Australian

<=/ National
=~ University

e The assert statement

Assertions in the homework program

%] Australian

<=/ National
=~ University

e assert isused to check if your homework calculates the correct
values

