
Announcements

• Please fill out the Week 2/3 Course Survey on Wattle
• Survey comments allow us to actively adjust the course as it is taught

• Homework 2 has been released and it is due next Sunday night
(04/03/24)
• Quiz for Week 3 also released
• Class representatives have been chosen

Course representatives

• COMP1730:
• Clarissa Blum
• Conor Aloisi

• COMP6730:
• Thi Do
• Xi (Darcy) Ding

• Contact details are posted on Wattle site

Thi Do Xi (Darcy) Ding

Lecture Roadmap
• Intro to Programming
• Variables
• Functions

• Definitions
• The stack
• Scope
• Functional abstraction

• Flow control – branching, recursion and iteration
• branching
• recursion
• iteration

• Strings
• Lists
• Code quality
• File IO
• Modules & Classes

Example: Neural networks

• Neural networks are mathematical
representations that learn the relationship
between input and output values
• Each node represents an artificial neuron
• The arrows represent connections

between the outputs of one node and the
input to another
• The connections have different weights –

represented by thickness of the arrows
• The inputs and the weights across the

network can be used to calculate the
output value

Calculation of the output from a single neuron

• This is a single ‘neuron’
• It has four inputs, with four

weights
• And a bias factor
• These are summed in the green

node
• The sum is passed through an

activation function
• Activation function is the

sigmoid function
• Output is ypred

Calculating a simple neuron, simply

X1

X2
S

b

f ypred
w1

w2

input bias

activation
sum

Re-writing to use functions
• Let’s try to recode this as a function that takes the inputs and

produces the output of a single neuron

Passing functions to functions

Functional abstraction

• Increased abstraction makes this scalable to more complex networks:

Branching
COMP1730/COMP6730

Reading: Textbook chapter 5 : Alex Downey, Think Python, 2nd Edition
(2016) from ’Boolean expressions’ to ‘Nested conditionals’

Program control flow

• Sequential program execution:

• The python interpreter always
executes instructions
(statements) one at a time in
sequence

Program control flow

• With functions and the stack:

• Function calls ‘insert’ a function
body into this sequence, but the
sequence of instructions remains
invariably the same

Flow control: if

• The if statement evaluates whether a statement is True or False,
then does something depending on the answer:

Expression is True Expression is False

value = 1

if value > 0:
 # code block
 print(“Value is positive”)

continue here

value = -1

if value > 0:
 # code block
 print(“Value is positive”)

continue here

Branching program flow

• Depending on the outcome of a test, the program executes one of
two alternative branches:

Example

• The if statement

Code blocks (reminder)
• A block is a (sub-)sequence of

statements
• A block must contain at least one

statement
• In python, a block is delimited by

indentation
• All statements in the block must be

preceded by the same number of
spaces/tabs (standard is 4 spaces)

• A block can include nested blocks
(if’s, etc)

• Blocks with indentation are a
python oddity
• (Almost) Every programming

language has a way of grouping
statements into blocks
• For example, in C, Java and many

others:

The ‘==‘ operator (reminder)

• Unlike the ‘=‘ operator, the ‘==‘ evaluates two values for equality
• The return value of this operator is a Boolean value, depending on the

statement being evaluated

Downey (2015) Think Python, 2nd Ed.

Boolean expressions (reminder)
• A Boolean expression evaluates to either True or False. Note

these are keywords in Python.
• A Boolean variable contains True or False values.
• Boolean values are returned by comparison operators (==, !=, <, >,

<=, >=) and a few more
• Boolean operators (and, or and not) allow comparison of Boolean

values (next slide)
• Warning #1: Where a truth value is required, python automatically

converts any value to type bool, but it may not be what you
expected
• Warning #2: Don’t use arithmetic operators (+, =, *, /) on Boolean

values

Boolean operators

• The operators and, or and not combine truth values:

• Boolean operators have lower precedence than comparison operators
(>, <, >=, <=, ==, !=) - which have lower precedence than arithmetic
operators (*, /, +, -)

a and b True if a and b both evaluate to True

a or b True if at least one of a and b evaluates
to True

not a True if a evaluates to False

Chaining operators: and, or and not

• These logical operators are a means of chaining together logical
statements:
• And:

• Or:

• Not:

• There are no limits to how these might be put together.

Example

• The if statement with chained operators

Back to if: alternative execution

• Sometimes called an ‘if-else’ statement:

Expression is True Expression is False

value = 34

if value % 2 == 0:
 # code block for True
 print(“Even number”)
else:
 # code block for False
 print(“Odd number”)

continue here

value = 31

if value % 2 == 0:
 # code block for True
 print(“Even number”)
else:
 # code block for False
 print(“Odd number”)

continue here

Branching program flow

• Depending on the outcome of a test, the program executes one of
two alternative branches:

Example

• The if-else statement

Nested conditionals

• You can nest conditional statements within another conditional
statements:

Downey (2015) Think Python, 2nd Ed.

elif: switches

• And these can be chained together with elif to make ‘chained
conditionals’:

• When including an else, it must be at the end of the chain. But
including a final else is optional

D
ow

ne
y

(2
01

5)
 T

hi
nk

 P
yt

ho
n,

 2
nd

 E
d.

if-elif-else

First expression is True Second expression is True

value = 34

if value > 0:
 # code block for True
 print(“Positive value”)
elif value < 0:
 # code block for False
 print(“Negative value”)
else:
 # neither expression True
 print(“Value must be 0”)

continue here

All preceding expressions are False

value = -34

if value > 0:
 # code block for True
 print(“Positive value”)
elif value < 0:
 # code block for False
 print(“Negative value”)
else:
 # neither expression True
 print(“Value must be 0”)

continue here

value = 0

if value > 0:
 # code block for True
 print(“Positive value”)
elif value < 0:
 # code block for False
 print(“Negative value”)
else:
 # neither expression True
 print(“Value must be 0”)

continue here

Example

• The if-elif-else statement

Multiple return statements with if

• The return statement causes execution to leave the function block
and return to where a function call was made
• There can be multiple return statements in a single function

Lubanovic (2019) Introducing Python

Exercises

• Complete Exercises 5-1, 5-2 and 5-3 of Think Python.

Reading

• Chapter 5 of Think Python from ’Boolean expressions’ to ‘Nested conditionals’ AND/OR
• Section 4.2 of Intro to Sci Prog with Python

Testing and assertions
COMP1730/COMP6730

Function testing
• A function makes a logical unit for

testing:
• Documented input requirements
• Expected output

• Testing can run a large variety of
cases to ensure correct input
produces expected output
• With lots of testing will identify

edge-cases - try a range of typical
input arguments:

• values equal to/less than/greater than
zero

• very large and small values
• values of equal and opposite signs

Testing code: assert

• Why is testing so important?
• In a large code-base, tests keep a project within design parameters
• Testing and fixing bugs can mean that routine code releases are _less_ stressful.

• Sanity checks find bugs introduced during development
• Routine checking that developing one part of the codebase doesn’t cause other

parts to stop working
• Or worse, silently start doing the wrong thing

• Testing that a function returns an expected value for standard input is
common.
• Basis of unit tests

• And, we use the assert statement to help mark your exams.

assert statement
• Syntax:

assert expression, “assertion error message”

• An assertion performs a sanity check that something that should be
True is actually True
• Unlike an if statement, assert will do nothing if the expression is
True
• assert will only do something if the expression evaluated is False

• What is does is raise and AssertionError !

if

value = 1

if value > 0:
 print(“Value is positive”)

assert

value = 1

assert value == 1, “Value not 1”

Example

• The assert statement

Assertions in the homework program

• assert is used to check if your homework calculates the correct
values

