Announcements

-] Australian

<= National
=7 University

* Please fill out the Week 2/3 Course Survey on Wattle
* Survey comments allow us to actively adjust the course as it is taught

* Homework 2 has been released and it is due next Sunday night
(04/03/24)

* Quiz for Week 3 also released
* Class representatives have been chosen

Lecture Roadmap

-] Australian
<= National

=7 University

Intro to Programming
Variables
* Functions
 Definitions
* The stack
* Scope
* Functional abstraction
Flow control — branching, recursion and iteration
¢ branching
* recursion
* iteration
* Strings
* Lists
Code quality
* FilelO

Modules & Classes

Course representatives

-] Australian

* COMP1730:
* Clarissa Blum
* Conor Aloisi

* COMP6730:
* Thi Do
* Xi (Darcy) Ding

== National

=7 University

Thi Do Xi (Darcy) Ding

* Contact details are posted on Wattle site

Example: Neural networks

- Australian

A simple neural network

input hidden output
layer layer layer

(source: wikipedia)

== National

<=7 University

* Neural networks are mathematical
representations that learn the relationship
between input and output values

* Each node represents an artificial neuron

* The arrows represent connections
between the outputs of one node and the
input to another

* The connections have different weights —
represented by thickness of the arrows

* The inputs and the weights across the
network can be used to calculate the
output value

Calculation of the output from a single nrgg@,m
‘(Bi-ﬁ)

University

* This is a single ‘neuron’
* It has four inputs, with four

w, R
.w\‘ weights
Ll W - v,.. * And a bias factor
T W (Activation function) * These are summed in the green
(Summation function) no d e

(Weights)
* The sum is passed through an
activation function

tivation f(x) = -1 * Activation function is the
aq va |pn (X).— Tre % sigmoid function
(sigmoid function) * OUtPUL IS Ypreq

(source: towardsdatascience.com)

Re-writing to use functions

Australian
National
University

* Let’s try to recode this as a function that takes the inputs and
produces the output of a single neuron

import math

weights of arrows
wl = 3.2

w2 = 1.5

bias to modify output independent of inputs
bias = —10

def summation(x1l, x2):
return wlxxl + w2*x2 + bias

def neuron_output(xl, x2):
total = summation(x1, x2)
return 1/(1+math.exp(—total))

print(neuron_output(0.7, 0.43))

Calculating a simple neuron, simply

- Australian

National
University

Ypred

activation

Example to describe activity of a neuron
in a neural network
import math

input signals
x1 = 0.7

X2 = 0.43
weights of arrows
wl =

w2 =1.5

bias to modify output independent of inputs
bias = -10

summation = wlxxl + w2*x2 + bias
output = 1/(1+math.exp(—summation))

print(summation, " ", output)

Passing functions to functions

Australian

National
University

import math

weights of arrows

wl = 3.2

w2 = 1.5

bias to modify output independent of inputs
bias = -10

def sigmoid(x):
return 1/(1+math.exp(—x))

def neuron_output(xl, x2, activation):
total = wlxxl + w2xx2 + bias
return activation(total)

print(neuron_output(0.7, 0.43, sigmoid))

Functional abstraction

| Australian
==/ National

=7 University

* Increased abstraction makes this scalable to more complex networks:

Program control flow

| Australian

—=.| National
=7 University

* Sequential program execution:

(statement
statement
é statement
statement

* The python interpreter always
executes instructions
(statements) one at a time in
sequence

Branching

COMP1730/COMP6730

Reading: Textbook chapter 5 : Alex Downey, Think Python, 2" Edition

(2016) from “Boolean expressions’ to ‘Nested conditionals’

| Australian
==/ National
=7 University

Program control flow

* With functions and the stack:

(statement
a_function ()
\def a_function() :
—» statement
‘; statement
* return statement

é statement

* Function calls ‘insert” a function
body into this sequence, but the
sequence of instructions remains
invariably the same

| Australian
—=.| National
= University

Flow control: 1 £ Branching program flow N

==/ National ==/ National
=7 University =7 University

* The if statement evaluates whether a statement is True or False,

then does something depending on the answer: * Depending on the outcome of a test, the program executes one of

two alternative branches:

if x > 0:

S e i e e tzig;ement e tjfziement
statement OR statement
T T statement é statement
Expression is True Expression is False cee
value = 1 value = -1
if value > 0: if value > 0:
code block # code block
print (“Value is positive”) print (“Walue is positive”)
continue here # continue here
Example Code blocks (reminder)
= ional == National
= ”git\llg?saity =7 University
* A block is a (sub-)sequence of * Blocks with indentation are a
* The 1 £ statement statements python oddity
* A block must contain at least one ¢ (Almost) Every programming
statement language has a way of grouping

statements into blocks

* For example, in C, Java and many
others:

* In python, a block is delimited by
indentation
* All statements in the block must be
preceded by the same number of
spaces/tabs (standard is 4 spaces))
* A block can include nested blocks
(1f’s, etc)

if (expression) {
block

The ‘== operator (reminder)

=7 University

* Unlike the ‘= operator, the ‘==' evaluates two values for equality

* The return value of this operator is a Boolean value, depending on the
statement being evaluated

>>> 5 == §
True

>>> 5 == 6
False

Downey (2015) Think Python, 2 Ed.

Boolean operators

| Australian
== National
University

* The operators and, or and not combine truth values:

a and b True if a and b both evaluate to True

a or b True if at least one of a and b evaluates
to True

not a True if a evaluates to False

* Boolean operators have lower precedence than comparison operators
(>, <, >=, <=, ==, I=) - which have lower precedence than arithmetic
operators (*, /, +, -)

Boolean expressions (reminder)

—==/ National

=7 University
* A Boolean expression evaluates to either True or False. Note
these are keywords in Python.

¢ A Boolean variable contains True or False values.

* Boolean values are returned by comparison operators (==, =, <, >,
<=, >=) and a few more

* Boolean operators (and, or and not) allow comparison of Boolean
values (next slide)

* Warning #1: Where a truth value is required, python automatically
converts any value to type bool, but it may not be what you
expected

* Warning #2: Don’t use arithmetic operators (+, =, *, /) on Boolean
values

Chaining operators: and, or and not

| Australian
== National

University

* These logical operators are a means of chaining together logical
statements:

'And: x > 0 and x < 10
n%2 == 0 or n%3 == 0

* Or:

° NOtZ not (x > vy)

* There are no limits to how these might be put together.

Example

Australian
National
University

* The i f statement with chained operators

Branching program flow

Australian
% National
University

* Depending on the outcome of a test, the program executes one of
two alternative branches:

if test: if test:
statement statement
statement statement

else: R else:
statement O statement

statement statement

statement statement

Back to i f: alternative execution

Australian
National
University

* Sometimes called an ‘1 f-else’ statement:

Example

Australian
% National
University

* The i f-else statement

Nested conditionals elif: switches o

University

* You can nest conditional statements within another conditional

. * And these can be chained together with e11i f to make ‘chained
statements: i ,
conditionals’:
if x == y: if x < y:

print('x and y are equal') print('x is less than y')

else: elif x > y: %
if x < y: print('x is greater than y') %

print('x is less than y') else: *f;

else: print('x and y are equal') H

print('x is greater than y') °

ouner (2615 ik ron, 26, * When including an else, it must be at the end of the chain. But
including a final el se is optional
if-elif-else Example

Australian
% National
University

Australian
% National
University

*The if-elif-else statement

Multiple return statements with i £

| Australian
==/ National

=7 University

* The return statement causes execution to leave the function block
and return to where a function call was made

* There can be multiple return statements in a single function

>>> def commentary(color):
if color == 'red':
return "It's a tomato."
elif color == "green":
return "It's a green pepper."
elif color == 'bee purple':
return "I don't know what it is, but only bees can see it."
else:

return "I've never heard of the color " + color +

Lubanovic (2019) Introducing Python

Testing and assertions

COMP1730/COMP6730

- Australian
—=.| National

University

Exercises

Australian
==/ National

=7 University

* Complete Exercises 5-1, 5-2 and 5-3 of Think Python.

Reading

* Chapter 5 of Think Python from ’Boolean expressions’ to ‘Nested conditionals’ AND/OR
* Section 4.2 of Intro to Sci Prog with Python

Function testing

Australian

—=.| National
= University

* A function makes a logical unit for

testing:
* Documented input requirements
. Expected output >>> change_in percent (1, 2)
i . 100.0
* Testing can run a large variety of >>> change.inpercent (2, 1)
cases to ensure correct input 00 _ c 1
produces expected output o g ongemnpereen i
* With lots of testing will identify e
_edge-cases - try a range of typical >>> change.in.percent (0, 1)
Input arguments: ZeroDivisionError
« values equal to/less than/greater than
zero

 very large and small values
« values of equal and opposite signs

Testing code: assert st

==/ National

=7 University

* Why is testing so important?

* In a large code-base, tests keep a project within design parameters

* Testing and fixing bugs can mean that routine code releases are _less_ stressful.
* Sanity checks find bugs introduced during development

* Routine checking that developing one part of the codebase doesn’t cause other

parts to stop working

* Or worse, silently start doing the wrong thing

* Testing that a function returns an expected value for standard input is
common.
* Basis of unit tests

* And, we use the assert statement to help mark your exams.

EXa m p | e -] Australian

—=.| National
=7 University

* The assert statement

assert statement .

==/ National

=7 University

* Syntax:
asser i A i error mes £
* An assertion perfo ity check that something that should be

True isactually True

* Unlike an 1 £ statement, assert will do nothing if the expression is
True

* assert will only do something if the expression evaluated is False
* What is does is raise and AssertionError !

if assert
jalue =1 value :/?2‘

if value > 0: assert value == 1,(“\/alue not l’\

Sprme is positive”) ——
Assertions in the homework program

* assert isused to check if your homework calculates the correct
values

