
Announcements

• Tutorial room changes

• BYOD lab Weds 6-8pm
• Was in Marie Reay 5.02
• Now in Birch 1.35/1.36 (at the same time a before)

• BYOD labs in Hanna Neumann Bldg 1.25
• The screen is not going to be fixed
• Labs are now moved to: TBA

• Thur 3-5pm - TBA
• Fri 12-2pm - TBA
• Fri 2-4pm - TBA

• Homework 2 due on Sun 11:55pm

• Quiz 2 and 3

Recursion
COMP1730/COMP6730

Reading: Textbook chapter 5 : Alex Downey, Think Python, 2nd Edition
(2016) from ‘Recursion’ section to end of chapter

Sections: Ch 5 – Recursion, Stack Diagrams for Recursive Functions,
Infinite Recursion

Recursion

• Definition: use of a procedure, subroutine or function that calls itself

one or more times until a specified condition is met

• In Python – and other languages – a function can call itself:

• Why would you want this? It is very useful.

• It is a way to repeat an operation easily, with altered input

• Recursion is a way to think about solving a problem: how to reduce it

to a simpler instance of itself?

Do
w

ne
y

(2
01

5)
 T

hi
nk

 P
yt

ho
n,

 2
nd

 E
d.

Infinite recursion (the curse of)
• Recursion requires a conditional, branching statement, so that it does

not recurse for ever. So, not like this:

• Infinite recursion is a common error that we will all encounter. In

python, infinite recursion is automagically terminated, to save us from

ourselves:

Do
w

ne
y

(2
01

5)
 T

hi
nk

 P
yt

ho
n,

 2
nd

 E
d.

The call stack (reminder)

• When a function call begins, the current instruction of the caller

function is put “on a stack”

• The called function ends when it encounters a return statement, or

reaches the end of the block

• The interpreter then returns to the next instruction after where the

function was called

• The call stack keeps track of where to come back to after each current

function call

Example

• Recursion – blast-off example

The call stack with recursion

main _main_

countdown
n = 3

countdown
n = 2

_main__main_

countdown
n = 3

countdown
n = 2

main

countdown
n = 3

countdown
n = 2

main

countdown
n = 3

countdown
n = 0

countdown
n = 1

countdown
n = 1

emit: Blastoff!Do
w

ne
y

(2
01

5)
 T

hi
nk

 P
yt

ho
n,

 2
nd

 E
d.

Exercises

• Complete Exercises 5-4 and 5-5 of Think Python.

Reading

• Chapter 5 of Think Python
• Sections: Ch 5 – Recursion, Stack Diagrams for Recursive Functions, Infinite Recursion

Iteration
COMP1730/3730

Reading:

Think Python, 2nd Edition (2016), Ch 7 sections ‘the while statement’ and
’break’ AND Chapter 4: Simple Repetition (for loops)

Intro to Sci Prog with Python – Sections 3.1, 3.2, 3.4, 4.4
docs.python.org – Section 4.1 to 4.5

Iteration
• Iteration is the ability to run a block of statements repeatedly

• In a controlled manner, choosing when to start, when to stop, or the correct
number of repetitions

• New syntax:

• while loops
• repeats a block of statements as long a a condition remains True
• Useful for looping an indeterminate number of times, until a condition is satisfied

• for loops
• Iterates through the elements of a collection or sequence (data structures and executes

a block once for each elements.
• Useful for looping a defined number of times

• break to exit a loop

• continue to go around again
• pass to do nothing

Program control flow

• From earlier:

• statements executed
consecutively from the
beginning to the end

• An if statement causes
branches and alternative
execution

Program control flow - iteration

• Iteration repeats a block of
statements

• A test is evaluated before each
iteration

• The block is executed is it evaluates to
True
• Execution will then return to the

beginning of the block

• While will keep executing the block
until the test statement evaluates as
False (which may never happen…)

while loop syntax:

1. Starts with the while keyword

2. A condition, which is a statement that evaluates to True or False
3. A colon ’:’

4. Followed by an indented code block

• This code will repeat infinitely, so long at the condition remains True

Downey (2015) Think Python, 2nd Ed.

while keyword

conditionindented code block

Example:

• Countdown example with while
• Using recursion:

• With a while loop, this example is now trivially easy compared to

using recursion

Another while loop example:

• Brute force compute the maximum k such that (1+2+…+k) <= 20

Exiting a while loop: break

• Sometimes it is useful to exit a loop before the original while

statement evaluates as False
• The break statement causes execution to exit and loop. Execution

will re-commence from the next line of code following the end of the

while block:

Skipping an iteration with continue

• And sometimes it is useful to just skip over one iteration of a loop

• Mostly due to a condition that applies only to some iterations of the loop

• The continue statement causes execution to skip over the rest of

the code in the while AND re-commence at the top of the code block,

re-evaluating the while statement:

while code example…

Lubanovic (2019) Introducing Python, 2nd Ed.

• There is no upper limit to the number of statements that can appear

in a code block

• However, there has to be at least one statement

• Sometimes it makes sense to have a body with no statements (or you haven’t
yet implemented a function, but want to test the rest of the code)

• Use pass as a statement:

• pass does nothing, but takes up a line

Doing nothing with pass Sequences with iterators

• Strings and Lists are Sequences in Python

• hello_world = “Hello, world!”

H e l l o , w o r l d !

Element: 0 1 2 3 4 5 6 7 8 9 10 11 12

Example:

• Traversing a string with a while loop

Example:

• Traversing a string with a for loop

for statement syntax

• Think of these like a while statement, but instead of an expression

evaluating truth, a for statement has a list to work through:

• for loops are perfect for iterating through lists of values

for instance in list_of_things:
 do things…

List or sequence

One element from list
Code block that runs for each iteration of loop

Iteration: the for statement

• for loops are bounded – meaning they have a start and an end

• Less scary than while, which in unbounded and can be an infinite loop

• If we have a list, we can easily iterate through it with for and in:

• No infinite loop!

for loop example
• Putting together all the syntax we have learned (and a sneaky list):

• New syntax:
• A for loop
• Conditional execution with if
• Multiple return statements
• A return statement interrupting a for loop

for with range()

• It is very useful to iterate through ranges of integers.

• If you want to do something 10 times, a list containing

[0,1,2,3,4,5,6,7,8,9] will let you do just this with the for statement.

• But having to make this list just for this is a drag – and this is just what

the range()function does:

• It looks like range() returns a list – but it is more elegant than that.

• This is prosaic – and a little Python-specific - but very useful

Example

• range(), nested loops and break

Example

• range() and continue

Exercises

• Complete Exercises 10-1 and 10-2 of Think Python.

• And (if you liked Ch 7) Exercises 7-1, 7-2 and 7-3 of Think Python.

Reading

• Chapter 7 (very brief chapter) of Think Python, ‘the while statement’ and ’break’

• Chapter 10 (first three sections, including Traversing a List) of Think Python

