Announcements

Australian

==/ National
=7 University

* Tutorial room changes
* BYOD lab Weds 6-8pm
* Was in Marie Reay 5.02

* Now in Birch 1.35/1.36 (at the same time a before) Re C u rS i O n

* BYOD labs in Hanna Neumann Bldg 1.25

* The screen is not going to be fixed COMP1730/COMP6730
* Labs are now moved to: TBA

¢ Thur 3-5pm - TBA

* Fri12-2pm-TBA Reading: Textbook chapter 5 : Alex Downey, Think Python, 2" Edition
* Fri2-4pm - TBA (2016) from ‘Recursion’ section to end of chapter
* Homework 2 due on Sun 11:55pm e, S€CHIONS: Ch 5= Recursion, Stack Diagrams for Recursive Functions,
* Quiz2and 3 < Infinite Recursion
Recursion N Infinite recursion (the curse of)
==/ National == National
=7 University =7 University

* Recursion requires a conditional, branching statement, so that it does

* Definition: use of a procedure, subroutine or function that calls itself i]
not recurse for ever. So, not like this:

one or more times until a specified condition is met
* In Python — and other languages — a function can call itself: Gl soeEEabe

recurse()
def countdown(n):
if n <= 0:
print('Blastoff!')

* Infinite recursion is a common error that we will all encounter. In
python, infinite recursion is automagically terminated, to save us from

Downey (2015) Think Python, 2" Ed

else:
print(n) ourselves: File "<stdin>", line 2, in recurse
countdown (n-1) File "<stdin>", line 2, in recurse 2
* Why would you want this? It is very useful. Fiie TsstainT, line 2, dn recurse ;
* |t is a way to repeat an operation easily, with altered input E
* Recursion is a way to think about solving a problem: how to reduce it File "<stdin>’, line 2, in recurse ;;;
2

to a Simpler instance Of Itself? RuntimeError: Maximum recursion depth exceeded

Downey (2015) Think Python, 2" Ed

The call stack (reminder)

-] Australian
== National
=7 University

* When a function call begins, the current instruction of the caller
function is put “on a stack”

* The called function ends when it encounters a return statement, or
reaches the end of the block

* The interpreter then returns to the next instruction after where the
function was called

* The call stack keeps track of where to come back to after each current
function call

The call stack with recursion

|| Australian
== National
S=7 University

def countdown(n):
if n <= 0:
print('Blastoff!"')
else:
print(n)
countdown(n-1)

/emit: Blastoff!

[==]
[F2]
[z o] o]
[t o] o]
By ey

Example

-] Australian

==/ National
=7 University

* Recursion — blast-off example

Exercises

[Australian

==/ National

=7 University

* Complete Exercises 5-4 and 5-5 of Think Python.

Reading

* Chapter 5 of Think Python
 Sections: Ch 5 — Recursion, Stack Diagrams for Recursive Functions, Infinite Recursion

lteration

COMP1730/3730

Reading:

Think Python, 2" Edition (2016), Ch 7 sections ‘the while statement’ and
'break’ AND Chapter 4: Simple Repetition (for loops)

| Australian
== National

=7 University Intro to Sci Prog with Python — Sections 3.1, 3.2, 3.4, 4.4

Program control flow

docs.python.org — Section 4.1 to 4.5

| Australian

* From earlier:

 statements executed
consecutively from the
beginning to the end

* An if statement causes
branches and alternative
execution

—=. National
=7 University

if Boolean_expression

True False

Python statement
) Python statement) Python statement)

Python statement Python statement Python statement

) Python statement) Python statement)
Python statement \—l—/

) Python statement
Python statement)

Python statement
FIGURE 2.1 Sequential program flow.
Python statement

FIGURE 2.2 Decision making flow of control
Images from Punch & Enbody

lteration

< Australian
==/ National

=7 University

* |teration is the ability to run a block of statements repeatedly
* In a controlled manner, choosing when to start, when to stop, or the correct

number of repetitions

* New syntax:
* while loops

* repeats a block of statements as long a a condition remains True
« Useful for looping an indeterminate number of times, until a condition is satisfied

* for loops

* lterates through the elements of a collection or sequence (data structures and executes

a block once for each elements.

« Useful for looping a defined number of times

* break to exit a loop
* continue to go around again
* pass to do nothing

Program control flow - iteration

| Australian

* Iteration repeats a block of
statements

* Atest is evaluated before each
iteration

* The block is executed is it evaluates to
True

¢ Execution will then return to the
beginning of the block

* While will keep executing the block
until the test statement evaluates as
False (which may never happen...)

<= National
=7 University

— ldemswn

while Boolean expression

True False

Python statement)
Python statement)

Python statement

—

Python statement)
Python statement)

Python statement

while loop syntax:

| Australian

==/ National

=7 University

Starts with the while keyword
A condition, which is a statement that evaluates to True or False
Acolon’:’

N e

Followed by an indented code block

while keyword
def coqug;wn(n):

'while n > 0:

print(l’l)_} condition

indented code block nemo i

print('Blastoff!"')

Downey (2015) Think Python, 27 Ed.

* This code will repeat infinitely, so long at the condition remains True

Another while loop example:

| Australian

—=.| National
=7 University

* Brute force compute the maximum k such that (1+2+...+k) <= 20

Example:

< Australian
==/ National

=7 University

* Countdown example with while
* Using recursion:

def countdown(n):
if n <= 0:
print('Blastoff!')
else:
print(n)
countdown (n-1)

* With awhile loop, this example is now trivially easy compared to
using recursion

Exiting a while loop: break

Australian

—=.| National
= University

* Sometimes it is useful to exit a loop before the original while
statement evaluates as False

* The break statement causes execution to exit and loop. Execution
will re-commence from the next line of code following the end of the
while block:

[>>>
>>> x =0
[>>> while True: # this statement will never evaluate as False!
[if x >= 3:
print("Exiting")
break
x=x+1
print("x is " + str(x))

Exiting
==

Skipping an iteration with continue

- Australian

<= National
=7 University

* And sometimes it is useful to just skip over one iteration of a loop
* Mostly due to a condition that applies only to some iterations of the loop

* The continue statement causes execution to skip over the rest of
the code in the while AND re-commence at the top of the code block,
re-evaluating the while statement:

>>>
>>> x =0
>>> while x <= 5:
x=x+1
if x % 2 == 0: # only True for even numbers
continue
print("x must be odd: " + str(x))

X must be odd: 1
x must be odd: 3
x must be odd: 5
>>>

Doing nothing with pass

- Australian

<= National
<=7 University

* There is no upper limit to the number of statements that can appear
in a code block
* However, there has to be at least one statement
* Sometimes it makes sense to have a body with no statements (or you haven’t
yet implemented a function, but want to test the rest of the code)

* Use pass as a statement:

if x < 0:

pass # TODO: need to handle negative values!

* pass does nothing, but takes up a line

while code example...

>>> while True:

value = input('Integer, please [q to quit]: ")

if value == 'q': # quit
break

number = int(value)

if number % 2 == 0: # an even number
continue

print(number, "squared is", number*number)

Integer, please [g to quit]: 1
1 squared is 1

Integer, please [g to quit]: 2
Integer, please [g to quit]: 3
3 squared is 9

Integer, please [g to quit]: 4
Integer, please [g to quit]: 5
5 squared is 25

Integer, please [g to quit]: g
>>>

Lubanovic (2019) Introducing Python, 2™ Ed.

Sequences with iterators

* Strings and Lists are Sequences in Python
* hello_world = “Hello, world!”

Element: 0o 1 2 3 4 5 6 7 8 9 10 11 12

< Australian
==/ National
=7 University

| Australian
== National
<=7 University

Example:

| Australian

==/ National

=7 University

* Traversing a string with a while loop

for statement syntax

| Australian

—=. National
=7 University

* Think of these like a while statement, but instead of an expression
evaluating truth, a for statement has a list to work through:

/ List or sequence

for instance in list_of_things:

/ do things..
One element from list \

Code block that runs for each iteration of loop

* for loops are perfect for iterating through lists of values

Example:

< Australian

==/ National
=7 University

* Traversing a string with a for loop

lteration: the for statement

Australian

=/ National
=7 University

* for loops are — meaning they have a start and an end
* Less scary than while, which in unbounded and can be an infinite loop

* If we have a list, we can easily iterate through it with for and in:

(>>>

[>>> some_list = ['a', 'b', 'c', 'd', 5, 6, 7, 1.5]

(>>> for some_value in some_list:
print(str(some_value))

* No infinite loop!

for loop example

* Putting together all the syntax we have learned (and a sneaky list

* New syntax:
A for loop
Conditional execution with 1 f

Multiple return statements
A return statement interrupting a for loop

Example

* range () , nested loops and break

>>> for n in range(2, 10):
for x in range(2, n):
if n % x == 0:
print(n,

break

CONOUNBWN: =« = =« = =

else:

is a prime number
is a prime number
equals 2 x 2
is a prime number
equals 2 x 3
is a prime number
equals 2 x 4
equals 3 * 3

print(n,

', 'blue’,

'black’,

‘equals', x, 'x', n//x)

loop fell through without finding a factor
'is a prime number')

):

Australian
National
University

Australian
National
University

for with range ()

Australian
National
University

* |t is very useful to iterate through ranges of integers.

* If you want to do something 10 times, a list containing
[0,1,2,3,4,5,6,7,8,9] will let you do just this with the for statement.

* But having to make this list just for this is a drag — and this is just what
the range () function does:

>>>
>>> for some_number in range(@,5):
print(str(some_number))

* It looks like range () returns a list — but it is more elegant than that.
* This is prosaic — and a little Python-specific - but very useful

Example

Australian
National
University

* range () and continue

>>> for num in range(2, 10):
o if num % 2 == 0:
print("Found an even number", num)
continue
print("Found an odd number", num)

Found an even number 2
Found an odd number 3
Found an even number 4
Found an odd number 5
Found an even number 6
Found an odd number 7
Found an even number 8
Found an odd number 9

E Xe rC i S e S Australian

==/ National

=7 University

* Complete Exercises 10-1 and 10-2 of Think Python.
* And (if you liked Ch 7) Exercises 7-1, 7-2 and 7-3 of Think Python.

Reading

* Chapter 7 (very brief chapter) of Think Python, ‘the while statement’ and 'break’
* Chapter 10 (first three sections, including Traversing a List) of Think Python

