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* First Drop-In time:
* Weds 1-2pm in CSIT building, Rm N113

e Week 4 — no homework this week

* Reminder —if your lab in in HN 1.25, you have a new room:
* Weds 3-5pm: relocated to BPB W118 (tentative)
* Fri 2-4pm: Birch 1.33 teaching lab
* Fri12-2pm: Birch 1.33 teaching lab




Coding Best Practices

COMP1730/6730

Have a glance at PEP8, co-authored by Guido van Rossum
https://peps.python.org/pep-0008/
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https://peps.python.org/pep-0008/

(Extreme) example
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* Working code can deliberately be made very hard to understand.

 What does this function do? Is it correct?

What is the input type?
def AbC(ABc):
ABC = len(ABc)
ABc = ABc[ABC-1:-ABC-1:-1] What is this attempted slice doing?
if ABC == 0:
return 0
The function calls itself here abC = AbC(ABc[-ABC:ABC-1:1])
if ABc[-ABC] < 0O:
abC += ABc[len(ABc)-ABC]
return abC

* Anyone?



(Extreme) example, reworked
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* Now, what does this function do? Is it correct?

Helpful function name Input name gives us a chance to guess the correct type

def sum_negative(input_list):
"""Return sum of all negative numbers in input_list. DocString tells us what is

Assumes: list of numerical values. (precondition) """ ‘ ‘ '
expected in the input list

total = 0 # cumulative sum
i=20 # current list index
while i < len(input_list):
if input_list[i] < 0O:
total = total + input_list[i] Comments form a useful
# total now has cumulative sum of negative values narrative to what is happening
i=i+l
return total # total has cumulative sum

# of negatives for input_list
# (post-condition)




Reading other people’s code
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* Or even code you wrote a while ago.

* Your primary impression will be how understandable the code is

* PEP20 -> Readability counts.
* And, do you think it does what it says it does?

» PEP8: Style Guide for Python Code (nttps://peps.python.org/pep-0008/)

* Python Enhancement Proposals (PEPs — https://peps.python.org):

» Kind-of work like technical white papers on specific topics (or political position
statements, sometimes. PEP20: The Zen of Python)

e Are numbered
* Go back twenty years sometimes (and are often written by Guido van Rossum)

e Can be very specific. PEP257: Docstrings
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Code Lay-out

Indentation
Use 4 spaces per indentation level.

Continuation lines should align wrapped elements either vertically using Python’s implicit line joining inside

parentheses, brackets and braces, or using a hanging indent [1]. When using a hanging indent the following should be
considered; there should be no arguments on the first line and further indentation should be used to clearly distinguish

itself as a continuation line:

# Correct:

# Aligned with opening delimiter.
foo = long_function_name(var_one, var_two,
var_three, var_four)

# Add 4 spaces (an extra level of indentation) to distinguish arguments from the rest.

def long_function_name(
var_one, var_two, var_three,
var_four):
print(var_one)

# Hanging indents should add a level.
foo = long_function_name(

var_one, var_two,

var_three, var_four)

# Wrong:

# Arguments on first line forbidden when not using vertical alignment.
foo = long_function_name(var_one, var_two,
var_three, var_four)

# Further indentation required as indentation is not distinguishable.
def long_function_name(

var_one, var_two, var_three,

var_four):

print(var_one)

The 4-space rule is optional for continuation lines.

Optional:
# Hanging indents *may* be indented to other than 4 spaces.
foo = long_function_name(

var_one, var_two,
var_three, var_four)
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Python Enhancement
Proposals

https://peps.python.org



What is code quality?
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* And, why should we care?

* Writing code is easy. Writing code do that you (and others) can be
confident it is correct is not.

* You will often spend more time finding and fixing errors that you
made (“bugs”) than writing code in the first place

* Good code is not only correct, but helps people (including yourself)
understand what it does and why it is correct



Aspects of code quality
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1. Commenting and documentation
2. Variable and function naming
3. Code organization (for large programs)



1. Comments: what makes a good comment?
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* Good comments raise the level of abstraction:
* What the code does and why, not how
* Except when how is especially complex

* Describe parameters and assumptions

* Python is dynamically typed, unlike other languages where the type must be
explicitly specified:

def sum_negative(input_list):
"""Return sum of negative numbers in input_list.
Assumes input_list contains only numbers."""

 Comments should always be up-to-date (and maintained)
* Located with relevance to their meaning



1. Comments: how NOT to comment
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 Commenting is not a way to make up for poor quality in other aspects
of code (organization, naming, etc):

X = 0 # Set the total to 0.

e Just plain wrong comments or not in the right place (or refers to the
way your code previously did something):

# loop over list to compute sum
avg = sum(the_list) / len(the_list)

» Stating the obvious:

X =5 # Sets x to 5.

* Or, assume that the reader is an expert python coder



1. Documentation: the function docstring

* Use these! They will appear in the interactive help () too

* They are the triple-quoted (""" or ' ' ') string as the first statement
inside a function definition
* Both in modules and classes
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* In the docstring, state the:
Purpose and limitations of the function

Required and optional parameters

Potential side effects  gef solve(f, y, lower, upper):
A . """Returns x such that f(x) =y (approximately).
ssumptlons Assumes f is monotone and that a solution lies in the interval

lower, upper] (and may recurse infinitely if not)."""
* return value : pper] y y )

* It is very normal for the docstring to often be longer than all the other
statements within a function code block



1. Documentation: More docstrings
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* These can be freeform text, but often have a required structure in
many software projects

* A guide to docstrings conventions is available as PEP257:
https://peps.python.org/pep-0257/

* From PEP257, here is a simple example of named parameters and
their description in a docstring:

def complex(real=0.0, imag=0.0):
"""Form a complex number.

Keyword arguments:
real —— the real part (default 0.0)
imag —— the imaginary part (default 0.0)

if imag == 0.0 and real == 0.0:
return complex_zero




Some Docstrings are structured essays
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64 class SequenceDataAbstractBaseClass(ABC):
. 65 """Abstract base class for sequence content providers.
* From BioPython o
67 Most users will not need to use this class. It is used internally as a base
S I N 68 class for sequence content provider classes such as _UndefinedSequenceData
eq ° py mOd u e . 69 defined in this module, and _TwoBitSequenceData in Bio.SeqIO.TwoBitIO.
70 Instances of these classes can be used instead of a "‘bytes'' object as the
. . . 71 data argument when creating a Seq object, and provide the sequence content
httpSZ//glthUb.Com/bIOpython/bIOF)ython 72 only when requested via "°__getitem__"'. This allows lazy parsers to load
/blOb/maSter/B|0/Seq.py 73 and parse sTequence data froT a file only f?r the request.ed sequence r?gions,
74 and _UndefinedSequenceData instances to raise an exception when undefined
75 sequence data are requested.
76
77 Future implementations of lazy parsers that similarly provide on-demand
78 parsing of sequence data should use a subclass of this abstract class and
79 implement the abstract methods *°__len__*" and "°'__getitem_ "
80
81 * ''__len__'" must return the sequence length;
82 * ''__getitem__"" must return
83
84 * a ' “bytes'' object for the requested region; or
85 * a new instance of the subclass for the requested region; or
86 * raise an '‘UndefinedSequenceError'"
87
88 Calling *'__getitem__ " for a sequence region of size zero should always
89 return an empty ‘‘bytes'' object.
90 Calling “°__getitem__ " for the full sequence (as in datal[:]) should
91 either return a "‘bytes'" object with the full sequence, or raise an
92 **UndefinedSequenceError'®
93
94 Subclasses of SequenceDataAbstractBaseClass must call "‘super().__init__ ()"
95 as part of their ''__init_ " method.
96 o
97
98 _slots__ = ()
99
100 def __init__ (self):
101 """Check if ‘'__getitem__"' returns a bytes-like object."""
102 assert self[:0] == b""

103



Some Docstrings have code examples
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3120  def complement(sequence, inplace=None):

¢ From BIOPython 3121 """Return the complement as a DNA sequence.

3122
Seq- py mOdUIe: 3123 If given a string, returns a new string object.

3124 Given a Seq object, returns a new Seq object.
https://github,Com/biopython/biopython 3125 Given a MutableSeq, returns a new MutableSeq object.
/bIob/master/Bio/Seq.py 3126 Given a SeqRecord object, returns a new SeqRecord object.

3127

3128 >>> my_seq = "CGA"

3129 >>> complement(my_seq, inplace=False)

3130 'GCT!

3131 >>> my_seq = Seq("CGA")

3132 >>> complement(my_seq, inplace=False)

3133 Seq('GCT')

3134 >>> my_seq = MutableSeq("CGA")

3135 >>> complement(my_seq, inplace=False)

3136 MutableSeq('GCT")

3137 >>> my_seq

3138 MutableSeq('CGA')

3139

3140 Any U in the sequence is treated as a T:

3141

3142 >>> complement(Seq("CGAUT"), inplace=False)

3143 Seq('GCTAA')

3144

3145 In contrast, *“complement_rna’" returns an RNA sequence:

3146

3147 >>> complement_rna(Seq("CGAUT"))

3148 Seq('GCUAA')
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2. Naming: good naming practice
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* As we saw with the first extreme example, a good function name
makes a huge difference to understanding what a function does

* The names of functions and variables should tell you what it does or
is used for

* Variable names should not shadow the name of a standard type, a
built-in function or a python keyword (remember Lecture 2)

* Or variables from an outer scope:

def a_fun_fun(int):
a_fun_fun = 2 x int
max = 5
return max < int

print(a_fun_fun(1))




2. Naming: simple advice
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* Your variable and function names can be long
* Using an IDE (like Spyder) will autocomplete names

* If in doubt, use underscores. Python built-in functions and keywords
rarely (never?) have underscores

* Some short names (single letters) are very familiar to experienced
programmers, and are used in certain contexts:
* lteratorindices: i, j, k
* Counts: n, m, k
e Coordinates: x, vy, =z

 Avoid similar (and ambigious) names in the same context

* eg.sum of negative numbers vs
sum of all negative numbers
* Not very clear how these are different and leads to confusion (== bugs)



3. Code Organisation
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* This is fundamentally about design and abstraction

* Good code organization:

* Avoids repetition

* Avoids repetition

Avoids repetition (and uses functions)

Fights complexity by isolating sub-problems and encapsulation their solutions
Raises the level of abstraction

Is easy to glance through

* In python, good code organization means you use:
* Functions
* Modules
* Classes



3. Code Organisation: Functions
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* Functions promote abstraction
* They separate what from how

* A good function (usually) does just one thing
* And this is reflected by the function name

* Functions reduce code repetition
* Help isolate errors and bugs to a single point

* Makes code easier to maintain and change
* Because changes happen just in one place



Wisdom from PEPS8: Indentation
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* Four spaces, good. Tabs, bad.

# Correct:

# Aligned with opening delimiter.
foo = long_function_name(var_one, var_two,
var_three, var_four)

# Add 4 spaces (an extra level of indentation) to distinguish arguments from the rest.
def long_function_name(
var_one, var_two, var_three,
var_four):
print(var_one)

# Hanging indents should add a level.
foo = long_function_name(

var_one, var_two,

var_three, var_four)

# Wrong:

# Arguments on first line forbidden when not using vertical alignment.
foo = long_function_name(var_one, var_two,
var_three, var_four)

# Further indentation required as indentation is not distinguishable.
def long_function_name(

var_one, var_two, var_three,

var_four):

print(var_one)



Wisdom from PEP&: Newlines and binary operators
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* This may seem a little fussy, but it makes good stylistic sense:

# Wrong:
# operators sit far away from their operands
income = (gross_wages +
taxable_interest +
(dividends - qualified_dividends) -
ira_deduction -
student_loan_interest)

To solve this readability problem, mathematicians and their publishers follow the opposite convention. Donald Knuth
explains the traditional rule in his Computers and Typesetting series: “Although formulas within a paragraph always
break after binary operations and relations, displayed formulas always break before binary operations” [3].

Following the tradition from mathematics usually results in more readable code:

# Correct:
# easy to match operators with operands
income = (gross_wages

+ taxable_interest

+ (dividends - qualified_dividends)
ira_deduction
student_loan_interest)
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Wisdom from PEP&: Whitespace

* Whitespace should always be used to increase the readability of your
code
* Code that is squashed together is harder to read
* Logical empty lines make it possible to keep related code together and
distinct from other ‘thoughts’ in the code
* Use whitespace and comments together:

« Comments can act like section headings in text
* The code can then resemble the paragraphs, separated by whitespace



Lecture Roadmap

* Intro to Programming
e Variables

* Functions
* The stack
* Scope

* Flow control
e if
e while
e for

* Strings

e Lists

* Dictionaries
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Strings
COMP1730/COMP6730

Reading: Textbook chapter 8 : Alex Downey, Think Python, 2" Edition (2016)
OR
Chapter 5 : Lubanovic, Introducing Python, 2™ Edition (2019)

_ But only up until section: Search and Select
Australian
National

University



Strings — Think Python Ch 8, (or Introducing Python - Ch 5)
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» "’Computer books often give the impression that programming is all
about math. Actually, most programmers work with strings of text
more often than numbers’”’. Lubanovic, Ch 5

e Strings — values of type str in python — are used to store and process

text
* A string is a sequence of characters —r S Introducing Python, 2nd
* strisasequence IPyd'thén Edition

* Lists are another sequence Bill Lubanovic

Published by O'Reilly Media, Inc.
Python

o..
nll
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Strings with Y, ™ and str () |

* Assign a string by placing any text between a pair of delimiters:
= ‘eucalyptus’

* Single quotes: tree name
“*he’s going to code”

* Double quotes: sentence
* Explicit string creation, when it might be ambiguous:

>>> str(98.6)

'98.6"

>>> str(1l.0e4)
'10000.0"

>>> str(True)

'"True'’
Lubanovic (2019) Introducing Python, 2" Ed. (Chapter 5)



The keys for quotation marks:

A ﬁuts_tralifn
= n
= Ugi\llce)rsity
~ ' @ [# [$ % [~ [& [* ( ) - = 1l
. 1 2 3 |4 |5 |6 |7 9 o |[- |= |\ -

{ }
Tab I:—N Q W IE IR [T |Y [U | O |P [ ]
Czps paek A S D F G H J K L s . Enter 4-—'
4} shift Z X € v B [N M < > 7 4 shift
Crl Sesy Alt Alt Gr Sesy Menu | Ctrl

* Beware of copying-and-pasting from these slides (and PDF files or
from the web).



Strings and quotation

marks

>>>
[>>> some_text = "this is a string'

[>>> print(some_text)

this is a string

[>>> some_more_text = "this is dlso a string"
[>>> print(some_more_text)

this is also a string

[>>> some_text = 'this is a string'

[>>> some_more_text = "this is a string"
[>>> some_text_triple = '''this is a string'''
[>>> some_text == some_more_text

True

[>>> some_text == some_text_triple

True

>>> prose = """This is

. string

Ty

[
I
le mu1t1 line
[
le
[

>>> prlnt(prose)
This is

a

multi-line
string

| >>>

rTTMulti-1line

quotes’’’

"""Another way
to do

it/l////

'Single quotes’

“Double quotes”

=X

&
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Quotation marks in strings?
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* Text often contains quotation marks too. Most programming
languages have a way to get around this.

* In python, you can use the ‘other’ kind of quotation marks for a quick
fix.

>>> "'Nay!' said the naysayer. 'Neigh?' said the horse."
"'Nay!' said the naysayer. 'Neigh?' said the horse."
>>> 'The rare double quote in captivity: ".'

'The rare double quote in captivity: ".'

Lubanovic (2019) Introducing Python, 2" Ed. (Chapter 5)

* But there is a better way... (next slide)



Escape character for guotation marks:
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* You may use the backslash character '\’ to escape your quotation
marks:
>>> fact = "The world's largest rubber duck was 54'2\" by 65'7\" by 105"’

>>> print(fact)
The world's largest rubber duck was 54'2" by 65'7" by 105'

Lubanovic (2019) Introducing Python, 2" Ed. (Chapter 5)

* This is a way of being explicit that the next character after the
backslash should be interpreted in a certain way.

* For \”” and \’ escape characters, this means that the quotation
should be interpreted literally as a * or V. Not as a string delimiter.



More Escape characters
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* When you need to be explicit that a character should be included in a
string literally, you can use the escape character “\’

 Common escape characters (there are many more too, try \b):

Escape character Prints as [>>> L '
[>>> print('one\ntwo')
one

. two
' Single quote

\ ! [>>> print('one\ttwo')
one two

\" Double quote e

\t Tab

\n Newline (line break)

\\ Backslash

Table 6.1 - Sweigart (2019) Automate the boring stuff with python



Escape characters for newlines:
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To put a newline (carriage return) into a string, use *\n’:

>>> palindrome = 'A man,\nA plan,\nA canal:\nPanama.'
>>> print(palindrome)

A man,

A plan,

A canal:

Panama.

Lubanovic (2019) Introducing Python, 2" Ed.



Combining strings and string interpolation ,
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* Strings can be concatenated with the + operator:

>>>name = 'Al'

>>> age = 4000

>>> 'Hello, my name is ' + name + '. I am ' + str(age) + ' years old.'

'Hello, my name is Al. I am 4000 years old.'

Sweigart (2019) Automate the boring stuff with python (Chapter 6)

* There is another short-hand syntax to do this that you may see, called
string interpolation:

>>> pame = 'Al’
>>> age = 4000
>>>'My name is %s. I am %s years old.' % (name, age)

'My name is Al. I am 4000 years old.'

Sweigart (2019) Automate the boring stuff with python (Chapter 6)



Strings are sequences (reminder)
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e Each of the characters in a string may be treated individually.
Because str variables are sequences.

* To access each character in a string, you use the index value (enclosed
in square brackets []:

>>>

>>> some_text = "Hello, world!"
>>> some_text

'Hello, world!'

>>> some_text[0]

H

>>> some_text[5]

>>> some_text[7]

* Index values always start counting from zero!



Strings are immutable
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* Once a string is assigned, it can only be changed by re-assigning the
whole string.

* If we try to change an element, we get an error:

>>> greeting = 'Hello, world!'
>>> greeting[0] = 'J'

TypeError: 'str' object does not support item assignment
* If we want to change this character, we need to reassign the string:

>>> greeting = 'Hello, world!'

>>> new greeting = 'J' + greeting[l:]
>>> new_greeting

'Jello, world!'

Downey (2015) Think Python, 2" Ed. (Chapter 8)



Strings and the in operator
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* The keyword in can be used as a Boolean operator to test if a substring appears
in another word:

>>> 'a' in 'banana'
True
>>> 'seed' in 'banana'

False

Downey (2015) Think Python, 2" Ed. (Chapter 8)



in with for - string traversal
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* The in keyword can also be used with for to iterate through a string:

prefixes = 'JKLMNOPQ'

suffix = 'ack'

for letter in prefixes:

print(letter + suffix)

Downey (2015) Think Python, 2™ Ed. (Chapter 8)
* Output: .
Kack
Lack
Mack
Nack
Oack
Pack
Qack



Example: in, for and string traversal
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* And this is useful, for example — define a function to find common letters in
words:

def in both(wordl, word2):
for letter in wordl:
if letter in word2:

print(letter)

>>> in both('apples', 'oranges')
a

=

S

Downey (2015) Think Python, 2" Ed. (Chapter 8)
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* Exercises 8-1, 8-2 and 8-4, Think Python Ch. 8
e Exercises in Lutz Ch 5 are a little different to what we’ve seen

Reading

e Lutz (2019) Introducing Python, Ch 5 (until section: Search and Select)
* Think Python Ch 8



