Announcements

Australian
National
University

* First Drop-In time:
* Weds 1-2pm in CSIT building, Rm N113

e Week 4 — no homework this week

* Reminder —if your lab in in HN 1.25, you have a new room:
* Weds 3-5pm: relocated to BPB W118 (tentative)
* Fri 2-4pm: Birch 1.33 teaching lab
* Fri12-2pm: Birch 1.33 teaching lab

Coding Best Practices

COMP1730/6730

Have a glance at PEP8, co-authored by Guido van Rossum
https://peps.python.org/pep-0008/

Australian
National
University

https://peps.python.org/pep-0008/

(Extreme) example

-/ Australian
== National
=~ University

* Working code can deliberately be made very hard to understand.

 What does this function do? Is it correct?

What is the input type?
def AbC(ABc):
ABC = len(ABc)
ABc = ABc[ABC-1:-ABC-1:-1] What is this attempted slice doing?
if ABC == 0:
return 0
The function calls itself here abC = AbC(ABc[-ABC:ABC-1:1])
if ABc[-ABC] < 0O:
abC += ABc[len(ABc)-ABC]
return abC

* Anyone?

(Extreme) example, reworked

=/ National

=7 University

* Now, what does this function do? Is it correct?

Helpful function name Input name gives us a chance to guess the correct type

def sum_negative(input_list):
"""Return sum of all negative numbers in input_list. DocString tells us what is

Assumes: list of numerical values. (precondition) """ ‘ ‘ '
expected in the input list

total = 0 # cumulative sum
i=20 # current list index
while i < len(input_list):
if input_list[i] < 0O:
total = total + input_list[i] Comments form a useful
total now has cumulative sum of negative values narrative to what is happening
i=i+l
return total # total has cumulative sum

of negatives for input_list
(post-condition)

Reading other people’s code

National
University

* Or even code you wrote a while ago.

* Your primary impression will be how understandable the code is

* PEP20 -> Readability counts.
* And, do you think it does what it says it does?

» PEP8: Style Guide for Python Code (nttps://peps.python.org/pep-0008/)

* Python Enhancement Proposals (PEPs — https://peps.python.org):

» Kind-of work like technical white papers on specific topics (or political position
statements, sometimes. PEP20: The Zen of Python)

e Are numbered
* Go back twenty years sometimes (and are often written by Guido van Rossum)

e Can be very specific. PEP257: Docstrings

Contents

Introduction

A Foolish Consistency is the Hobgoblin
of Little Minds

Code Lay-out

Indentation

Tabs or Spaces?

Maximum Line Length

Should a Line Break Before or After a
Binary Operator?

Blank Lines

Source File Encoding

Imports

Module Level Dunder Names
String Quotes

Whitespace in Expressions and
Statements

= Pet Peeves

= Other Recommendations

When to Use Trailing Commas
Comments

= Block Comments

= Inline Comments

= Documentation Strings

Naming Conventions

= Overriding Principle

= Descriptive: Naming Styles

= Prescriptive: Naming Conventions
Names to Avoid

ASCIl Compatibility

Package and Module Names
Class Names

Type Variable Names

Exception Names

Global Variable Names
Function and Variable Names
Function and Method Arguments
Method Names and Instance
Variables

Constants

Code Lay-out

Indentation
Use 4 spaces per indentation level.

Continuation lines should align wrapped elements either vertically using Python’s implicit line joining inside

parentheses, brackets and braces, or using a hanging indent [1]. When using a hanging indent the following should be
considered; there should be no arguments on the first line and further indentation should be used to clearly distinguish

itself as a continuation line:

Correct:

Aligned with opening delimiter.
foo = long_function_name(var_one, var_two,
var_three, var_four)

Add 4 spaces (an extra level of indentation) to distinguish arguments from the rest.

def long_function_name(
var_one, var_two, var_three,
var_four):
print(var_one)

Hanging indents should add a level.
foo = long_function_name(

var_one, var_two,

var_three, var_four)

Wrong:

Arguments on first line forbidden when not using vertical alignment.
foo = long_function_name(var_one, var_two,
var_three, var_four)

Further indentation required as indentation is not distinguishable.
def long_function_name(

var_one, var_two, var_three,

var_four):

print(var_one)

The 4-space rule is optional for continuation lines.

Optional:
Hanging indents *may* be indented to other than 4 spaces.
foo = long_function_name(

var_one, var_two,
var_three, var_four)

-] Australian
==/ National
=7 University

Python Enhancement
Proposals

https://peps.python.org

What is code quality?

Australian
National
University

* And, why should we care?

* Writing code is easy. Writing code do that you (and others) can be
confident it is correct is not.

* You will often spend more time finding and fixing errors that you
made (“bugs”) than writing code in the first place

* Good code is not only correct, but helps people (including yourself)
understand what it does and why it is correct

Aspects of code quality

Australian
National
University

1. Commenting and documentation
2. Variable and function naming
3. Code organization (for large programs)

1. Comments: what makes a good comment?

stralfan
National
University

* Good comments raise the level of abstraction:
* What the code does and why, not how
* Except when how is especially complex

* Describe parameters and assumptions

* Python is dynamically typed, unlike other languages where the type must be
explicitly specified:

def sum_negative(input_list):
"""Return sum of negative numbers in input_list.
Assumes input_list contains only numbers."""

 Comments should always be up-to-date (and maintained)
* Located with relevance to their meaning

1. Comments: how NOT to comment

Australian
National
University

 Commenting is not a way to make up for poor quality in other aspects
of code (organization, naming, etc):

X = 0 # Set the total to 0.

e Just plain wrong comments or not in the right place (or refers to the
way your code previously did something):

loop over list to compute sum
avg = sum(the_list) / len(the_list)

» Stating the obvious:

X =5 # Sets x to 5.

* Or, assume that the reader is an expert python coder

1. Documentation: the function docstring

* Use these! They will appear in the interactive help () too

* They are the triple-quoted (""" or ' ' ') string as the first statement
inside a function definition
* Both in modules and classes

Australian
National
University

* In the docstring, state the:
Purpose and limitations of the function

Required and optional parameters

Potential side effects gef solve(f, y, lower, upper):
A . """Returns x such that f(x) =y (approximately).
ssumptlons Assumes f is monotone and that a solution lies in the interval

lower, upper] (and may recurse infinitely if not)."""
* return value : pper] y y)

* It is very normal for the docstring to often be longer than all the other
statements within a function code block

1. Documentation: More docstrings

Australian
National
University

* These can be freeform text, but often have a required structure in
many software projects

* A guide to docstrings conventions is available as PEP257:
https://peps.python.org/pep-0257/

* From PEP257, here is a simple example of named parameters and
their description in a docstring:

def complex(real=0.0, imag=0.0):
"""Form a complex number.

Keyword arguments:
real —— the real part (default 0.0)
imag —— the imaginary part (default 0.0)

if imag == 0.0 and real == 0.0:
return complex_zero

Some Docstrings are structured essays

Australian
National
63 University
64 class SequenceDataAbstractBaseClass(ABC):
. 65 """Abstract base class for sequence content providers.
* From BioPython o
67 Most users will not need to use this class. It is used internally as a base
S I N 68 class for sequence content provider classes such as _UndefinedSequenceData
eq ° py mOd u e . 69 defined in this module, and _TwoBitSequenceData in Bio.SeqIO.TwoBitIO.
70 Instances of these classes can be used instead of a "‘bytes'' object as the
. . . 71 data argument when creating a Seq object, and provide the sequence content
httpSZ//glthUb.Com/bIOpython/bIOF)ython 72 only when requested via "°__getitem__"'. This allows lazy parsers to load
/blOb/maSter/B|0/Seq.py 73 and parse sTequence data froT a file only f?r the request.ed sequence r?gions,
74 and _UndefinedSequenceData instances to raise an exception when undefined
75 sequence data are requested.
76
77 Future implementations of lazy parsers that similarly provide on-demand
78 parsing of sequence data should use a subclass of this abstract class and
79 implement the abstract methods *°__len__*" and "°'__getitem_ "
80
81 * ''__len__'" must return the sequence length;
82 * ''__getitem__"" must return
83
84 * a ' “bytes'' object for the requested region; or
85 * a new instance of the subclass for the requested region; or
86 * raise an '‘UndefinedSequenceError'"
87
88 Calling *'__getitem__ " for a sequence region of size zero should always
89 return an empty ‘‘bytes'' object.
90 Calling “°__getitem__ " for the full sequence (as in datal[:]) should
91 either return a "‘bytes'" object with the full sequence, or raise an
92 **UndefinedSequenceError'®
93
94 Subclasses of SequenceDataAbstractBaseClass must call "‘super().__init__ ()"
95 as part of their ''__init_ " method.
96 o
97
98 _slots__ = ()
99
100 def __init__ (self):
101 """Check if ‘'__getitem__"' returns a bytes-like object."""
102 assert self[:0] == b""

103

Some Docstrings have code examples

Australian
National
University
3119
3120 def complement(sequence, inplace=None):

¢ From BIOPython 3121 """Return the complement as a DNA sequence.

3122
Seq- py mOdUIe: 3123 If given a string, returns a new string object.

3124 Given a Seq object, returns a new Seq object.
https://github,Com/biopython/biopython 3125 Given a MutableSeq, returns a new MutableSeq object.
/bIob/master/Bio/Seq.py 3126 Given a SeqRecord object, returns a new SeqRecord object.

3127

3128 >>> my_seq = "CGA"

3129 >>> complement(my_seq, inplace=False)

3130 'GCT!

3131 >>> my_seq = Seq("CGA")

3132 >>> complement(my_seq, inplace=False)

3133 Seq('GCT')

3134 >>> my_seq = MutableSeq("CGA")

3135 >>> complement(my_seq, inplace=False)

3136 MutableSeq('GCT")

3137 >>> my_seq

3138 MutableSeq('CGA')

3139

3140 Any U in the sequence is treated as a T:

3141

3142 >>> complement(Seq("CGAUT"), inplace=False)

3143 Seq('GCTAA')

3144

3145 In contrast, *“complement_rna’" returns an RNA sequence:

3146

3147 >>> complement_rna(Seq("CGAUT"))

3148 Seq('GCUAA')

[- Australian
=/ National

2. Naming: good naming practice

=~ University

* As we saw with the first extreme example, a good function name
makes a huge difference to understanding what a function does

* The names of functions and variables should tell you what it does or
is used for

* Variable names should not shadow the name of a standard type, a
built-in function or a python keyword (remember Lecture 2)

* Or variables from an outer scope:

def a_fun_fun(int):
a_fun_fun = 2 x int
max = 5
return max < int

print(a_fun_fun(1))

2. Naming: simple advice

Australian
National
University

* Your variable and function names can be long
* Using an IDE (like Spyder) will autocomplete names

* If in doubt, use underscores. Python built-in functions and keywords
rarely (never?) have underscores

* Some short names (single letters) are very familiar to experienced
programmers, and are used in certain contexts:
* lteratorindices: i, j, k
* Counts: n, m, k
e Coordinates: x, vy, =z

 Avoid similar (and ambigious) names in the same context

* eg.sum of negative numbers vs
sum of all negative numbers
* Not very clear how these are different and leads to confusion (== bugs)

3. Code Organisation

Australian
National
University

* This is fundamentally about design and abstraction

* Good code organization:

* Avoids repetition

* Avoids repetition

Avoids repetition (and uses functions)

Fights complexity by isolating sub-problems and encapsulation their solutions
Raises the level of abstraction

Is easy to glance through

* In python, good code organization means you use:
* Functions
* Modules
* Classes

3. Code Organisation: Functions

Australian
National
University

* Functions promote abstraction
* They separate what from how

* A good function (usually) does just one thing
* And this is reflected by the function name

* Functions reduce code repetition
* Help isolate errors and bugs to a single point

* Makes code easier to maintain and change
* Because changes happen just in one place

Wisdom from PEPS8: Indentation

Australian
National
University

* Four spaces, good. Tabs, bad.

Correct:

Aligned with opening delimiter.
foo = long_function_name(var_one, var_two,
var_three, var_four)

Add 4 spaces (an extra level of indentation) to distinguish arguments from the rest.
def long_function_name(
var_one, var_two, var_three,
var_four):
print(var_one)

Hanging indents should add a level.
foo = long_function_name(

var_one, var_two,

var_three, var_four)

Wrong:

Arguments on first line forbidden when not using vertical alignment.
foo = long_function_name(var_one, var_two,
var_three, var_four)

Further indentation required as indentation is not distinguishable.
def long_function_name(

var_one, var_two, var_three,

var_four):

print(var_one)

Wisdom from PEP&: Newlines and binary operators

== National
=7 University

* This may seem a little fussy, but it makes good stylistic sense:

Wrong:
operators sit far away from their operands
income = (gross_wages +
taxable_interest +
(dividends - qualified_dividends) -
ira_deduction -
student_loan_interest)

To solve this readability problem, mathematicians and their publishers follow the opposite convention. Donald Knuth
explains the traditional rule in his Computers and Typesetting series: “Although formulas within a paragraph always
break after binary operations and relations, displayed formulas always break before binary operations” [3].

Following the tradition from mathematics usually results in more readable code:

Correct:
easy to match operators with operands
income = (gross_wages

+ taxable_interest

+ (dividends - qualified_dividends)
ira_deduction
student_loan_interest)

Australian
National

Wisdom from PEP&: Whitespace

* Whitespace should always be used to increase the readability of your
code
* Code that is squashed together is harder to read
* Logical empty lines make it possible to keep related code together and
distinct from other ‘thoughts’ in the code
* Use whitespace and comments together:

« Comments can act like section headings in text
* The code can then resemble the paragraphs, separated by whitespace

Lecture Roadmap

* Intro to Programming
e Variables

* Functions
* The stack
* Scope

* Flow control
e if
e while
e for

* Strings

e Lists

* Dictionaries

%] Australian

~
'~
NN
N/
>

National
University

Strings
COMP1730/COMP6730

Reading: Textbook chapter 8 : Alex Downey, Think Python, 2" Edition (2016)
OR
Chapter 5 : Lubanovic, Introducing Python, 2™ Edition (2019)

_ But only up until section: Search and Select
Australian
National

University

Strings — Think Python Ch 8, (or Introducing Python - Ch 5)

[+ Australian
=/ National
=7 University

» "’Computer books often give the impression that programming is all
about math. Actually, most programmers work with strings of text
more often than numbers’”’. Lubanovic, Ch 5

e Strings — values of type str in python — are used to store and process

text
* A string is a sequence of characters —r S Introducing Python, 2nd
* strisasequence IPyd'thén Edition

* Lists are another sequence Bill Lubanovic

Published by O'Reilly Media, Inc.
Python

o..
nll

Australian

Strings with Y, ™ and str () |

* Assign a string by placing any text between a pair of delimiters:
= ‘eucalyptus’

* Single quotes: tree name
“*he’s going to code”

* Double quotes: sentence
* Explicit string creation, when it might be ambiguous:

>>> str(98.6)

'98.6"

>>> str(1l.0e4)
'10000.0"

>>> str(True)

'"True'’
Lubanovic (2019) Introducing Python, 2" Ed. (Chapter 5)

The keys for quotation marks:

A ﬁuts_tralifn
= n
= Ugi\llce)rsity
~ ' @ [# [$ % [~ [& [* () - = 1l
. 1 2 3 |4 |5 |6 |7 9 o |[- |= |\ -

{ }
Tab I:—N Q W IE IR [T |Y [U | O |P []
Czps paek A S D F G H J K L s . Enter 4-—'
4} shift Z X € v B [N M < > 7 4 shift
Crl Sesy Alt Alt Gr Sesy Menu | Ctrl

* Beware of copying-and-pasting from these slides (and PDF files or
from the web).

Strings and quotation

marks

>>>
[>>> some_text = "this is a string'

[>>> print(some_text)

this is a string

[>>> some_more_text = "this is dlso a string"
[>>> print(some_more_text)

this is also a string

[>>> some_text = 'this is a string'

[>>> some_more_text = "this is a string"
[>>> some_text_triple = '''this is a string'''
[>>> some_text == some_more_text

True

[>>> some_text == some_text_triple

True

>>> prose = """This is

. string

Ty

[
I
le mu1t1 line
[
le
[

>>> prlnt(prose)
This is

a

multi-line
string

| >>>

rTTMulti-1line

quotes’’’

"""Another way
to do

it/l////

'Single quotes’

“Double quotes”

=X

&

Australian
National
University

Quotation marks in strings?

[-4 Australian
~—=-/ National

=7 University

* Text often contains quotation marks too. Most programming
languages have a way to get around this.

* In python, you can use the ‘other’ kind of quotation marks for a quick
fix.

>>> "'Nay!' said the naysayer. 'Neigh?' said the horse."
"'Nay!' said the naysayer. 'Neigh?' said the horse."
>>> 'The rare double quote in captivity: ".'

'The rare double quote in captivity: ".'

Lubanovic (2019) Introducing Python, 2" Ed. (Chapter 5)

* But there is a better way... (next slide)

Escape character for guotation marks:

National
University

* You may use the backslash character '\’ to escape your quotation
marks:
>>> fact = "The world's largest rubber duck was 54'2\" by 65'7\" by 105"’

>>> print(fact)
The world's largest rubber duck was 54'2" by 65'7" by 105'

Lubanovic (2019) Introducing Python, 2" Ed. (Chapter 5)

* This is a way of being explicit that the next character after the
backslash should be interpreted in a certain way.

* For \”” and \’ escape characters, this means that the quotation
should be interpreted literally as a * or V. Not as a string delimiter.

More Escape characters

[Australian
~—=-/ National

=7 University

* When you need to be explicit that a character should be included in a
string literally, you can use the escape character “\’

 Common escape characters (there are many more too, try \b):

Escape character Prints as [>>> L '
[>>> print('one\ntwo')
one

. two
' Single quote

\ ! [>>> print('one\ttwo')
one two

\" Double quote e

\t Tab

\n Newline (line break)

\\ Backslash

Table 6.1 - Sweigart (2019) Automate the boring stuff with python

Escape characters for newlines:

’:;é& National

=~ University

To put a newline (carriage return) into a string, use *\n’:

>>> palindrome = 'A man,\nA plan,\nA canal:\nPanama.'
>>> print(palindrome)

A man,

A plan,

A canal:

Panama.

Lubanovic (2019) Introducing Python, 2" Ed.

Combining strings and string interpolation ,

’(,_A;\’, National

=~ University

* Strings can be concatenated with the + operator:

>>>name = 'Al'

>>> age = 4000

>>> 'Hello, my name is ' + name + '. I am ' + str(age) + ' years old.'

'Hello, my name is Al. I am 4000 years old.'

Sweigart (2019) Automate the boring stuff with python (Chapter 6)

* There is another short-hand syntax to do this that you may see, called
string interpolation:

>>> pame = 'Al’
>>> age = 4000
>>>'My name is %s. I am %s years old.' % (name, age)

'My name is Al. I am 4000 years old.'

Sweigart (2019) Automate the boring stuff with python (Chapter 6)

Strings are sequences (reminder)

Australian
National
University

e Each of the characters in a string may be treated individually.
Because str variables are sequences.

* To access each character in a string, you use the index value (enclosed
in square brackets []:

>>>

>>> some_text = "Hello, world!"
>>> some_text

'Hello, world!'

>>> some_text[0]

H

>>> some_text[5]

>>> some_text[7]

* Index values always start counting from zero!

Strings are immutable

Australian
National
University

* Once a string is assigned, it can only be changed by re-assigning the
whole string.

* If we try to change an element, we get an error:

>>> greeting = 'Hello, world!'
>>> greeting[0] = 'J'

TypeError: 'str' object does not support item assignment
* If we want to change this character, we need to reassign the string:

>>> greeting = 'Hello, world!'

>>> new greeting = 'J' + greeting[l:]
>>> new_greeting

'Jello, world!'

Downey (2015) Think Python, 2" Ed. (Chapter 8)

Strings and the in operator

Australian
National
University

* The keyword in can be used as a Boolean operator to test if a substring appears
in another word:

>>> 'a' in 'banana'
True
>>> 'seed' in 'banana'

False

Downey (2015) Think Python, 2" Ed. (Chapter 8)

in with for - string traversal

[- Australian
=/ National

=~ University

* The in keyword can also be used with for to iterate through a string:

prefixes = 'JKLMNOPQ'

suffix = 'ack'

for letter in prefixes:

print(letter + suffix)

Downey (2015) Think Python, 2™ Ed. (Chapter 8)
* Output: .
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Example: in, for and string traversal

=] Australian

X National
=~ University

* And this is useful, for example — define a function to find common letters in
words:

def in both(wordl, word2):
for letter in wordl:
if letter in word2:

print(letter)

>>> in both('apples', 'oranges')
a

=

S

Downey (2015) Think Python, 2" Ed. (Chapter 8)

Exe rC I SeS Australian

National
University

* Exercises 8-1, 8-2 and 8-4, Think Python Ch. 8
e Exercises in Lutz Ch 5 are a little different to what we’ve seen

Reading

e Lutz (2019) Introducing Python, Ch 5 (until section: Search and Select)
* Think Python Ch 8

