
Announcements
• First Drop-In time:

• Weds 1-2pm in CSIT building, Rm N113

• Week 4 – no homework this week
• Reminder – if your lab in in HN 1.25, you have a new room:

• Weds 3-5pm: relocated to BPB W118 (tentative)
• Fri 2-4pm: Birch 1.33 teaching lab
• Fri 12-2pm: Birch 1.33 teaching lab

Coding Best Practices
COMP1730/6730

Have a glance at PEP8, co-authored by Guido van Rossum
https://peps.python.org/pep-0008/

https://peps.python.org/pep-0008/

(Extreme) example

• Working code can deliberately be made very hard to understand.
• What does this function do? Is it correct?

• Anyone?

What is the input type?

What is this attempted slice doing?

The function calls itself here

(Extreme) example, reworked

• Now, what does this function do? Is it correct?
Helpful function name Input name gives us a chance to guess the correct type

DocString tells us what is
expected in the input list

Comments form a useful
narrative to what is happening

Reading other people’s code
• Or even code you wrote a while ago.
• Your primary impression will be how understandable the code is

• PEP20 -> Readability counts.
• And, do you think it does what it says it does?

• PEP8: Style Guide for Python Code (https://peps.python.org/pep-0008/)

• Python Enhancement Proposals (PEPs – https://peps.python.org):
• Kind-of work like technical white papers on specific topics (or political position

statements, sometimes. PEP20: The Zen of Python)
• Are numbered
• Go back twenty years sometimes (and are often written by Guido van Rossum)
• Can be very specific. PEP257: Docstrings

Python Enhancement
Proposals

https://peps.python.org

What is code quality?

• And, why should we care?

• Writing code is easy. Writing code do that you (and others) can be
confident it is correct is not.
• You will often spend more time finding and fixing errors that you

made (“bugs”) than writing code in the first place
• Good code is not only correct, but helps people (including yourself)

understand what it does and why it is correct

Aspects of code quality

1. Commenting and documentation
2. Variable and function naming
3. Code organization (for large programs)

1. Comments: what makes a good comment?

• Good comments raise the level of abstraction:
• What the code does and why, not how
• Except when how is especially complex

• Describe parameters and assumptions
• Python is dynamically typed, unlike other languages where the type must be

explicitly specified:

• Comments should always be up-to-date (and maintained)
• Located with relevance to their meaning

1. Comments: how NOT to comment

• Commenting is not a way to make up for poor quality in other aspects
of code (organization, naming, etc):

• Just plain wrong comments or not in the right place (or refers to the
way your code previously did something):

• Stating the obvious:

• Or, assume that the reader is an expert python coder

1. Documentation: the function docstring
• Use these! They will appear in the interactive help() too
• They are the triple-quoted (""" or ''') string as the first statement

inside a function definition
• Both in modules and classes

• In the docstring, state the:
• Purpose and limitations of the function
• Required and optional parameters
• Potential side effects
• Assumptions
• return value

• It is very normal for the docstring to often be longer than all the other
statements within a function code block

1. Documentation: More docstrings

• These can be freeform text, but often have a required structure in
many software projects
• A guide to docstrings conventions is available as PEP257:

https://peps.python.org/pep-0257/

• From PEP257, here is a simple example of named parameters and
their description in a docstring:

Some Docstrings are structured essays
• From BioPython

Seq.py module:
https://github.com/biopython/biopython
/blob/master/Bio/Seq.py

Some Docstrings have code examples
• From BioPython

Seq.py module:
https://github.com/biopython/biopython
/blob/master/Bio/Seq.py

2. Naming: good naming practice

• As we saw with the first extreme example, a good function name
makes a huge difference to understanding what a function does
• The names of functions and variables should tell you what it does or

is used for
• Variable names should not shadow the name of a standard type, a

built-in function or a python keyword (remember Lecture 2)
• Or variables from an outer scope:

2. Naming: simple advice
• Your variable and function names can be long

• Using an IDE (like Spyder) will autocomplete names
• If in doubt, use underscores. Python built-in functions and keywords

rarely (never?) have underscores
• Some short names (single letters) are very familiar to experienced

programmers, and are used in certain contexts:
• Iterator indices: i, j, k
• Counts: n, m, k
• Coordinates: x, y, z

• Avoid similar (and ambigious) names in the same context
• eg. sum_of_negative_numbers vs
sum_of_all_negative_numbers
• Not very clear how these are different and leads to confusion (== bugs)

3. Code Organisation
• This is fundamentally about design and abstraction
• Good code organization:

• Avoids repetition
• Avoids repetition
• Avoids repetition (and uses functions)
• Fights complexity by isolating sub-problems and encapsulation their solutions
• Raises the level of abstraction
• Is easy to glance through

• In python, good code organization means you use:
• Functions
• Modules
• Classes

3. Code Organisation: Functions

• Functions promote abstraction
• They separate what from how

• A good function (usually) does just one thing
• And this is reflected by the function name

• Functions reduce code repetition
• Help isolate errors and bugs to a single point
• Makes code easier to maintain and change

• Because changes happen just in one place

Wisdom from PEP8: Indentation
• Four spaces, good. Tabs, bad.

Wisdom from PEP8: Newlines and binary operators
• This may seem a little fussy, but it makes good stylistic sense:

Wisdom from PEP8: Whitespace
• Whitespace should always be used to increase the readability of your

code
• Code that is squashed together is harder to read
• Logical empty lines make it possible to keep related code together and

distinct from other ‘thoughts’ in the code

• Use whitespace and comments together:
• Comments can act like section headings in text
• The code can then resemble the paragraphs, separated by whitespace

Lecture Roadmap

• Intro to Programming
• Variables
• Functions

• The stack
• Scope

• Flow control
• if
• while
• for

• Strings
• Lists
• Dictionaries

Strings
COMP1730/COMP6730

Reading: Textbook chapter 8 : Alex Downey, Think Python, 2nd Edition (2016)
OR

Chapter 5 : Lubanovic, Introducing Python, 2nd Edition (2019)
But only up until section: Search and Select

Strings – Think Python Ch 8, (or Introducing Python - Ch 5)

• ’’’Computer books often give the impression that programming is all
about math. Actually, most programmers work with strings of text
more often than numbers’’’. Lubanovic, Ch 5
• Strings – values of type str in python – are used to store and process

text
• A string is a sequence of characters

• str is a sequence
• Lists are another sequence

Strings with ‘, “ and str()

• Assign a string by placing any text between a pair of delimiters:
• Single quotes: tree_name = ‘eucalyptus’
• Double quotes: sentence = “he’s going to code”

• Explicit string creation, when it might be ambiguous:

Lubanovic (2019) Introducing Python, 2nd Ed. (Chapter 5)

The keys for quotation marks:

• Beware of copying-and-pasting from these slides (and PDF files or
from the web).

Strings and quotation marks

'Single quotes’

“Double quotes”

’’’Multi-line
quotes’’’

”””Another way
to do
it”””

Quotation marks in strings?

• Text often contains quotation marks too. Most programming
languages have a way to get around this.
• In python, you can use the ‘other’ kind of quotation marks for a quick

fix.

• But there is a better way… (next slide)

Lubanovic (2019) Introducing Python, 2nd Ed. (Chapter 5)

Escape character for quotation marks:

Lubanovic (2019) Introducing Python, 2nd Ed. (Chapter 5)

• You may use the backslash character ‘\’ to escape your quotation
marks:

• This is a way of being explicit that the next character after the
backslash should be interpreted in a certain way.
• For \” and \’ escape characters, this means that the quotation

should be interpreted literally as a ‘ or “. Not as a string delimiter.

More Escape characters
• When you need to be explicit that a character should be included in a

string literally, you can use the escape character ‘\’
• Common escape characters (there are many more too, try \b):

Table 6.1 - Sweigart (2019) Automate the boring stuff with python

Escape characters for newlines:

To put a newline (carriage return) into a string, use ‘\n’:

Lubanovic (2019) Introducing Python, 2nd Ed.

Combining strings and string interpolation
• Strings can be concatenated with the + operator:

• There is another short-hand syntax to do this that you may see, called
string interpolation:

Sweigart (2019) Automate the boring stuff with python (Chapter 6)

Sweigart (2019) Automate the boring stuff with python (Chapter 6)

Strings are sequences (reminder)

• Each of the characters in a string may be treated individually.
Because str variables are sequences.
• To access each character in a string, you use the index value (enclosed

in square brackets []:

• Index values always start counting from zero!

Strings are immutable

• Once a string is assigned, it can only be changed by re-assigning the
whole string.
• If we try to change an element, we get an error:

• If we want to change this character, we need to reassign the string:

Downey (2015) Think Python, 2nd Ed. (Chapter 8)

Strings and the in operator
• The keyword in can be used as a Boolean operator to test if a substring appears

in another word:

Downey (2015) Think Python, 2nd Ed. (Chapter 8)

in with for - string traversal
• The in keyword can also be used with for to iterate through a string:

• Output:
Downey (2015) Think Python, 2nd Ed. (Chapter 8)

Example: in, for and string traversal

• And this is useful, for example – define a function to find common letters in
words:

Downey (2015) Think Python, 2nd Ed. (Chapter 8)

Exercises

• Exercises 8-1, 8-2 and 8-4, Think Python Ch. 8
• Exercises in Lutz Ch 5 are a little different to what we’ve seen

Reading

• Lutz (2019) Introducing Python, Ch 5 (until section: Search and Select) OR
• Think Python Ch 8

