Announcements

<= National

=7 University

* First Drop-In time:
* Weds 1-2pm in CSIT building, Rm N113

* Week 4 — no homework this week

* Reminder —if your lab in in HN 1.25, you have a new room:
* Weds 3-5pm: relocated to BPB W118 (tentative)

* Fri2-4pm:

Birch 1.33 teaching lab

* Fri 12-2pm: Birch 1.33 teaching lab

(Extreme) example .

<= National
<=7 University

* Working code can deliberately be made very hard to understand.
* What does this function do? Is it correct?

What is the input type?

def AbC(ABc):

The function calls itself here

ABC = len(ABc)
ABc = ABc[ABC-1:-ABC-1:-1] What is this attempted slice doing?
if ABC == 0:
return 0
abC = AbC(ABc[-ABC:ABC-1:])
if ABc[-ABC] < 0:
abC += ABc[len(ABc)-ABC]
return abC

* Anyone?

Coding Best Practices

COMP1730/6730

Have a glance at PEP8, co-authored by Guido van Rossum

https://peps.python.org/pep-0008/

| Australian
== National
=7 University

(Extreme) example, reworked

== National
<=7 University

* Now, what does this function do? Is it correct?

Helpful function name Input name gives us a chance to guess the correct type

def sum_negative(input_list):
"""Return sum of all negative numbers in input_list. DocString tells us what is
Assumes: list of numerical values. (precondition) """
expected in the input list
total = 0 # cumulative sum
i=0 # current list index
while i < len(input_list):
if input_list[i] < 0:

total = total + input_list[i] Comments form a useful
total now has cumulative sum of negative values narrative to what is happening
i=i+1
return total # total has cumulative sum

of negatives for input_list
(post-condition)

Reading other people’s code

| Australian

== National
=7 University

* Or even code you wrote a while ago.

* Your primary impression will be how understandable the code is
* PEP20 -> Readability counts.
* And, do you think it does what it says it does?

* PEP8: Style Guide for Python Code (https://peps.python.org/pep-0008/)

* Python Enhancement Proposals (PEPS — https://peps.python.org):

* Kind-of work like technical white papers on specific topics (or political position
statements, sometimes. PEP20: The Zen of Python)

* Are numbered
* Go back twenty years sometimes (and are often written by Guido van Rossum)
* Can be very specific. PEP257: Docstrings

What is code quality?

| Australian

<= National
<=7 University

* And, why should we care?

* Writing code is easy. Writing code do that you (and others) can be
confident it is correct is not.

* You will often spend more time finding and fixing errors that you
made (“bugs”) than writing code in the first place

* Good code is not only correct, but helps people (including yourself)
understand what it does and why it is correct

= When to Use Trailing Commas

Contents Code Lay-out

= Introduction
= AFoolish Consistency is the Hobgoblin Indentation

of Little Minds Use 4 spaces per indentation level.

= Code Lay-out

+ Indentation Continuation lines should PP using Python's implicit line joining inside
i parentheses, bracet ndbrsces, o uing angingnent (- When using angingcentthe llwing e
P considered; there should be the first line and furth beused 2

= Maximum Line Length
= Should a Line Break Before or After a
Binary Operator?
= Blank Lines
= Source File Encoding # Aligned with opening delim;
foo = long_function nzme(var one, var_ty
= Imports

wo,
r_three, var_four)
= Module Level Dunder Names

itself as a continuation line:

Correct:

= String Quotes # Add 4 spaces (an extra level of indentation) to distinguish arguments from the rest.
= Whitespace in Expressions and

et “long. Function nave(
var_one, var_two, var_three,
Statements N x ooy
» PetPeeves print(var_one)
» Other Recommendations
Hanging indents should add a level.

= Comments var_one, var.

~_two,
= Block Comments var_three, var_four)
= Inline Comments

= Documentation Strings # Wrong:

= Naming Conventions

Argunents on first Line forbidden when not using vertical alignment.
= Overriding Principle g 5 = 5

foo = long_function_name(var_one, var_tu
» Descriptive: Naming Styles var_three, var_four)
= Prescriptive: Naming Conventions

= Ramesto ol def long_function_name(

= ASCIl Compatibility var_one, var_two, var_three,
= Package and Module Names var_four)

» Class Names print(var_one)

Further indentation required as indentation is not distinguishable.

= Type Variable Names

= Exception Names

= Global Variable Names Optional

= Function and Variable Names

« Function and Method Arguments be indented to other than 4 spaces.
et i foo = long_ fonction _name (

= Method Names and Instance Garorevarttay
Variables var_three, var_four)

= Constants

The 4-space rule is optional for continuation lines.

< Australian

_ ==

National
University

Python Enhancement

Proposals

https://peps.python.org

Aspects of code quality

| Australian

N

1. Commenting and documentation
2. Variable and function naming
3. Code organization (for large programs)

National
University

1. Comments: what makes a good comment? 1. Comments: how NOT to comment N

stralfan
== National == National

=7 University =7 University
* Commenting is not a way to make up for poor quality in other aspects
* Good comments raise the level of abstraction: of code (organization, naming, etc):
* What the code does and why, not how X = 0 # Set the total to 0.
* Except when how is especially complex . . R
]) * Just plain wrong comments or not in the right place (or refers to the
* Describe parameters and assumptions way your code previously did something):
* Python is dynamically typed, unlike other languages where the type must be
explicitly specified: # loop over list to compute sum

avg = sum(the_list) / len(the.list)

def sum_negative(input_list):
"""Return sum of negative numbers in input._list.

Assumes input_list contains only numbers.""" * Stating the obvious:

x =5 # Sets x to 5.

* Comments should always be up-to-date (and maintained)

* Located with relevance to their meanin
& * Or, assume that the reader is an expert python coder

1. Documentation: the function docstring ... 1. Documentation: More docstrings
== National = Nra1it\i/g?sailty
« Use these! They will appear in the interactive help () too :
* They are the triple-quoted (""" or " ' ') string as the first statement * These can be freeform text, but often have a required structure in
inside a function definition many software projects

* Both in modules and classes
* A guide to docstrings conventions is available as PEP257:

* In the docstring, state the: https://peps.python.org/pep-0257/

* Purpose and limitations of the function . .
P * From PEP257, here is a simple example of named parameters and

" Required and optional parameters their description in a docstring:
* Potential side effects Gef sotve(f, y, lower, upper): i

. """Returns x such that f(x) =y (approximately). def lex(real=0.0, imag=0.0):
* Assumptlons Assumes f is monotone and that a solution lies in the interval ¢ E'?:"‘goi; ;eiomplex ;E’:ger.
[lower, upper] (and may recurse infinitely if not)."""
* return value Keyword arguments:
. . real —— the r'ealvpart (default 0.0)
* It is very normal for the docstring to often be longer than all the other g = G Aty (27 (s OL)
statements within a function code block i comtenrero

Some Docstrings are structured essays

- Australian
== National
=7 University

* From BioPython
Seq.py module:
https://github.com/biopython/biopython .
/blob/master/Bio/Seq.py ;
2. Naming: good naming practice .
= ational
=7 University

* As we saw with the first extreme example, a good function name
makes a huge difference to understanding what a function does

* The names of functions and variables should tell you what it does or
is used for

* Variable names should not shadow the name of a standard type, a
built-in function or a python keyword (remember Lecture 2)

* Or variables from an outer scope:

_fun(int):
_fun = 2 % int
5

return max < int

print(a_fun_fun(1))

Some Docstrings have code examples

< Australian
==/ National

=7 University

3119
. 3120 def complement(sequence, inplace=None):
* From BioPython 3z hetum the comlemnt a5 o D sequence.
3122
Seq.py module: U I siven string, returms 3 new string ooject.
3124 Given a Seq object, returns a new Seq object.
https://github.com/biopython/biopython 3125 Given a MutableSeq, returns a new MutableSeq object.
/b|0b/ma5ter/B]0/seq_py 3126 Given a SeqRecord object, returns a new SeqRecord object.
3127
3128 >>> my_seq = "CGA"
3129 >>> complement(my_seq, inplace=False)
3130 “GeT!
3131 >>> my_seq = Seq("CGA")
3132 >>> complement(my_seq, inplace=False)
3133 Seq('6CT*)
3134 >>> my_seq = MutableSeq("CGA")
3135 >>> complement(my_seq, inplace=False)
3136 MutableSeq('GCT")
3137 >>> my_seq
3138 MutableSeq(*CGA")
3139
3140 Any U in the sequence is treated as a T:
3141
3142 >>> complement(Seq("CGAUT"), inplace=False)
3143 Seq(*GCTAA')
3144
3145 In contrast, **complement_rna’* returns an RNA sequence:
3146
3147 >>> complement_rna(Seq("CGAUT"))
3148 Seq('GCUAA')

2. Naming: simple advice

| Australian
=/ National
=7 University

* Your variable and function names can be long
* Using an IDE (like Spyder) will autocomplete names

* If in doubt, use underscores. Python built-in functions and keywords
rarely (never?) have underscores

* Some short names (single letters) are very familiar to experienced
programmers, and are used in certain contexts:
* Iteratorindices: i, j, k
* Counts: n, m, k
* Coordinates: x, vy, z
* Avoid similar (and ambigious) names in the same context

* eg.sum_of negative numbers vs
sum_of all negative numbers

* Not very clear how these are different and leads to confusion (== bugs)

3. Code Organisation 3. Code Organisation: Functions

| Australian
== National == National
=7 University =7 University
* This is fundamentally about design and abstraction

* Good code organization:
* Avoids repetition
* Avoids repetition _ * A good function (usually) does just one thing
* Avoids repetition (and uses functions) * And this is reflected by the function name

* Functions promote abstraction
* They separate what from how

Fights complexity by isolating sub-problems and encapsulation their solutions . . q q .
L]

* Raises the level of abstraction unctions reduce code repetition

* Is easy to glance through

* In python, good code organization means you use:
* Functions
* Modules
* Classes

* Help isolate errors and bugs to a single point

* Makes code easier to maintain and change
* Because changes happen just in one place

tors

Wisdom from PEP8: Indentation R Wisdom from PEP8: Newlines and binary opera

: ustralian
= ”ational = ”ational
=7 niversity = niversity
* Four spaces, good. Tabs, bad. . . . -)
* This may seem a little fussy, but it makes good stylistic sense:
Correct:
Wrong:
Aligned with opening delimiter. # operators sit far away from their operands
foo = long_function_name(var_one, var_two, income = (gross_wages +
var_three, var_four) taxable_interest +
(dividends - qualified_dividends) -
Add 4 spaces (an extra level of indentation) to distinguish arguments from the rest. ira_deduction -
def long_function_name(student_loan_interest)
var_one, var_two, var_three,

var_four):

print(var_one) To solve this readability problem, mathematicians and their publishers follow the opposite convention. Donald Knuth

explains the traditional rule in his C andT ing series: “Although formulas within a paragraph always
Hanging indents should add a level. break after binary operations and relations, displayed formulas always break before binary operations” [3].
foo = long_function_name(N .) .
var_one, var_two, Following the tradition from mathematics usually results in more readable code:
var_three, var_four)
Correct:
easy to match operators with operands
Wrong: income = (gross_wages
. + taxable_interest
Arguments on first line forbidden when not using vertical alignment. + (dividends - qualified_dividends)
foo = long_function_name(var_one, var_two, - ira_deduction -
var_three, var_four) d

- student_loan_interest)
Further indentation required as indentation is not distinguishable.
def long_function_name(
var_one, var_two, var_three,
var_four):
print(var_one)

Wisdom from PEP8: Whitespace

| Australian
==/ National

=7 University

* Whitespace should always be used to increase the readability of your
code
* Code that is squashed together is harder to read
* Logical empty lines make it possible to keep related code together and
distinct from other ‘thoughts’ in the code
* Use whitespace and comments together:
* Comments can act like section headings in text
* The code can then resemble the paragraphs, separated by whitespace

Strings
COMP1730/COMP6730

Reading: Textbook chapter 8 : Alex Downey, Think Python, 2" Edition (2016)
OR
Chapter 5 : Lubanovic, Introducing Python, 2" Edition (2019)
- Australian But only up until section: Search and Select

<= National
<=7 University

Lecture Roadmap

< Australian
==/ National

=7 University

* Intro to Programming
* Variables

* Functions
* The stack
* Scope

* Flow control
e if
* while
s for

e Strings

* Lists

* Dictionaries

Strings — Think Python Ch 8, (or Introducing Python - Ch 5)

| Australian
<= National
=7 University

 ""’Computer books often give the impression that programming is all
about math. Actually, most programmers work with strings of text
more often than numbers’”’. Lubanovic, Ch 5

* Strings — values of type str in python — are used to store and process

text
* Astring is a sequence of characters ... S Introducing Python, 2nd
* strisasequence IP‘yd’fhcgm Edition
* Lists are another sequence @ Bill Lubanovic
Published by O'Reilly Media, Inc.

Python

Strings with ¥, Y and str ()

| Australian

==/ National
=7 University

* Assign a string by placing any text between a pair of delimiters:
* Single quotes: tree name = ‘eucalyptus’

* Double quotes: sentence = “he’s going to code”

* Explicit string creation, when it might be ambiguous:

>>> str(98.6)
'98.6"

>>> str(l.0e4)
'10000.0"

>>> str(True)

'True'

Strings and quotation marks

Lubanovic (2019) Introducing Python, 2" Ed. (Chapter 5)

Australian

[>>>
[>>> some_text = "this is a string’
[>>> print(some_text)
this is a string
[>>> some_more_text = "this is also a string"
[>>> print(some_more_text)
this is also a string
[>>> some_text = 'this is a string'
[>>> some_more_text = "this is a string"
[>>> some_text_triple ''this is a string''’'
[>>> some_text == some_more_text
True
[>>> some_text = some_text_triple
True
[>>> prose = '''This is
[a
multi-line
string

[>>> print(prose)
This is

a
multi-line
string

>>>

National
University

{0

'Single quotes’

“Double quotes”

""'Multi-line

quotes’ '’

"""Another way
to do

it"””

The keys for quotation marks:

< Australian
==/ National

=7 University

~ [} @ |# $ %o * () [[

Key Key

A ’&]| ‘4_
1 2 3 4 5 6 7 8 9 0 - = !\
migla (W [E ‘R ‘T ‘Y |u ‘I ‘o |P ‘E_B\
TFFPFEFFFFE]~
Lshin \z \x \c |v |B yN \M = [\,?TGW
ctrl S | At ’ ‘AIIGr |OS IMsnu|Clr\

* Beware of copying-and-pasting from these slides (and PDF files or
from the web).

Quotation marks in strings?

| Australian

<= National
=7 University

* Text often contains quotation marks too. Most programming
languages have a way to get around this.

* In python, you can use the ‘other’ kind of quotation marks for a quick
fix.

>>> "'Nay!' said the naysayer. 'Neigh?' said the horse."
"'Nay!' said the naysayer. 'Neigh?' said the horse."

>>> 'The rare double quote in captivity: ".'

'The rare double quote in captivity: ".'

Lubanovic (2019) Introducing Python, 2" Ed. (Chapter 5)

* But there is a better way... (next slide)

Escape character for quotation marks:

| Australian
==/ National

=7 University

* You may use the backslash character *\’ to escape your quotation
marks:
>>> fact = "The world's largest rubber duck was 54'2\" by 65'7\" by 105''

>>> print(fact)
The world's largest rubber duck was 54'2" by 65'7" by 105'

Lubanovic (2019) Introducing Python, 2" Ed. (Chapter 5)

* This is a way of being explicit that the next character after the
backslash should be interpreted in a certain way.

* For \” and \’ escape characters, this means that the quotation
should be interpreted literally as a * or . Not as a string delimiter.

Escape characters for newlines:

| Australian

f\ National
=7 University

To put a newline (carriage return) into a string, use ‘\n’:

>>> palindrome = 'A man,\nA plan,\nA canal:\nPanama.'
>>> print(palindrome)

A man,

A plan,

A canal:

Panama.

Lubanovic (2019) Introducing Python, 2° Ed.

More Escape characters

< Australian
==/ National

=7 University
* When you need to be explicit that a character should be included in a
string literally, you can use the escape character *\’

* Common escape characters (there are many more too, try \b):

[>>>

Escape character Prints as 5)
\' Single quote

W@ Double quote

\t Tab

\n Newline (line break)

\\ Backslash

Table 6.1 - Sweigart (2019) Automate the boring stuff with python

Combining strings and string interpolation ..

—=.| National

= University

* Strings can be concatenated with the + operator:

>>>pame = 'Al'
>>> age = 4000
>>> 'Hello, my name is ' + name + '. I am ' + str(age) + ' years old.'

'Hello, my name is Al. I am 4000 years old.'

Sweigart (2019) Automate the boring stuff with python (Chapter 6)

* There is another short-hand syntax to do this that you may see, called
string interpolation:

>>>pame = 'Al'
>>> age = 4000
>>>'My name is %s. I am %s years old.' % (name, age)

'My name is Al. I am 4000 years old.'

Sweigart (2019) Automate the boring stuff with python (Chapter 6)

Strings are sequences (reminder)

Australian
National
University

* Each of the characters in a string may be treated individually.
Because str variables are sequences.

* To access each character in a string, you use the index value (enclosed
in square brackets []:

>>:

>>> some_text = "Hello, world!"
>>> some_text

"Hello, world!"'

>>> some_text[0]

some_text[5]

>>> some_text[7]

* Index values always start counting from zero!

Strings and the in operator

Australian
National
University

* The keyword in can be used as a Boolean operator to test if a substring appears
in another word:

>>> 'a' in 'banana’

>>> 'seed' in 'banana’

False

Downey (2015) Think Python, 2° Ed. (Chapter 8)

Strings are immutable

Australian
National
University

* Once a string is assigned, it can only be changed by re-assigning the
whole string.

* If we try to change an element, we get an error:

>>> greeting = 'Hello, world!'
>>> greeting[0] = 'J'
TypeError: 'str' object does not support item assignment

* If we want to change this character, we need to reassign the string:

>>> greeting = 'Hello, world!'

>>> new_greeting = 'J' + greeting[l:]
>>> new_greeting

'Jello, world!'

Downey (2015) Think Python, 2™ Ed. (Chapter 8)

in with for - string traversal

Australian
National
University

* The in keyword can also be used with for to iterate through a string:

prefixes = 'JKLMNOPQ'

suffix = 'ack'’

for letter in prefixes:
print(letter + suffix)

Downey (2015) Think Python, 2™ Ed. (Chapter 8)
* Output:
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Example: in, for and string traversal Exercises

| Australian < Australian

==/ National == National

=7 University =7 University

* And this is useful, for example — define a function to find common letters in

words: * Exercises 8-1, 8-2 and 8-4, Think Python Ch. 8

* Exercises in Lutz Ch 5 are a little different to what we’ve seen

def in_both(wordl, word2):
for letter in wordl:

if letter in word2:
print(letter)

>>> in_both('apples', 'oranges') Rea d i n g

a

e

s

* Lutz (2019) Introducing Python, Ch 5 (until section: Search and Select)
* Think Python Ch 8

Downey (2015) Think Python, 2" Ed. (Chapter 8)

