
Lecture Roadmap

• Intro to Programming
• Variables
• Functions

• The stack
• Scope

• Flow control
• if
• while
• for

• Strings
• Lists
• Tuples
• Dictionaries

Lists (part II)
COMP1730/COMP6730

Reading: Textbook chapter 10 : Alex Downey, Think Python, 2nd Edition
(2016)

List traversal
• Like strings, lists can be traversed with a for loop:

• And modified in the process, if desired:

Downey (2015) Think Python, 2nd Ed.

List methods: sort()
• Sort a list with sort()

• Note how the sort is performed on the original list. The result is that
the original list is sorted – and does not create a new list.

Downey (2015) Think Python, 2nd Ed. (chapter 10)

Deleting list elements: pop()

• Lists are mutable, but how to delete an element? With pop().

• The elements with higher indices all shuffle down one, to fill the gap left by
the deleted element.
• There are other ways to delete elements, too: the del and remove()

methods. Each with useful features.

Downey (2015) Think Python, 2nd Ed. (chapter 10)

Delete by value with remove()

• pop() deletes whatever value is present at the index specified.
• remove() deletes the first occurrence of a particular value:

• It won’t remove further occurrences of the value from the list
• You will also get a ValueError error if the list doesn’t contain the

value specified

Sweigart (2019) Automate the boring stuff with python (Chapter 4)

Searching a list with index()

• When you pass a value to the list method index(), it will return the
index value of that value in the list:

• Though, if the value isn’t present you will get a ValueError error

Sweigart (2019) Automate the boring stuff with python (Chapter 4)

reverse()

• Seemingly trivial, but reverse() is useful:

Sweigart (2019) Automate the boring stuff with python (Chapter 4)

More list methods
• Full list at https://docs.python.org/3/tutorial/datastructures.html

Method Description

list.append(x) Add an item to the end of the list.

list.extend(iterable) Extend the list by appending all the items from the iterable.

list.insert(i, x) Insert an item at a given position.

list.remove(x) Remove the first item from the list whose value is equal to x.

list.pop([i]) Remove the item at the given position in the list,

list.clear() Remove all items from the list.

list.index(x[, start[, end]]) Return zero-based index in the list of the first item whose value is equal to x.

list.count(x) Return the number of times x appears in the list.

list.sort(*, key=None, reverse=False) Sort the items of the list in place

list.copy() Return a shallow copy of the list.

https://docs.python.org/3/tutorial/datastructures.html

List slices
• Use a colon ‘:’ with brackets to specify the range of elements to

include – [start:end]
• The start element is included with the returned elements. The end

element is not. Remember, this is the ‘half-open’ range.

Downey (2015) Think Python, 2nd Ed.

Slices
• Slice syntax: example_string[start:end]

-start is the index of the first element
-end the index of the next element past the last (half-open range)

• Slicing works of all built-in sequence types (str, list, tuple) and
returns the same type
• If start or end are left out, they default to the beginning and end

>>> x = [3,1.5,0,-1.5,-3]
>>> x[1:4]
[1.5, 0, -1.5]

Indexes and list length
• Say we have a list:
decimal_values = [3.0, 1.5, 0.0, -1.5, -3.0]

• Index starts from 0
• Index numbers must be integers
• Negative integers allow wrap-around of index numbers:
decimal_values[0] -> 3.0
decimal_values[-2] -> -1.5
decimal_values[-1] -> -3.0

decimal_values:

Index:

List methods: append() and extend()

• Add elements to a list with append()

• Add a list to a list with extend()

• insert()too
Downey (2015) Think Python, 2nd Ed. (chapter 10)

List and string methods – what is different?
• Remember, Strings are immutable. Lists are mutable.
• A method on a string can’t change that string – so methods create a new string:

• A method on a list can CHANGE THE LIST. It makes sense, but can catch you out
when you are starting to program:

Downey (2015) Think Python, 2nd Ed.

list example

• Say you needed to add the numbers in a list:

• Though, in reality, this is redundant because of the sum()function:

Downey (2015) Think Python, 2nd Ed. (chapter 10)

Downey (2015) Think Python, 2nd Ed. (chapter 10)

Creating lists
• You can use different ways to create a list:

• Say, you want to perform an operation on the list at the same time:

• rounded becomes [1, 2, 2, 3, 3]

my_list = list() # creates an empty list
my_list = list([1,2,3,4]) # creates a list with the list argument supplied
my_list = [1,2,3,4] # the same thing

precise = [1.23, 1.99, 2.01, 2.51, 3.45]
rounded = []

for number in precise:
 rounded_number = round(number)
 rounded.append(rounded_number)

Creating lists with comprehensions
• Alternatively, you can use a python short-hand called a list

comprehension
• This:

• Becomes this:

precise = [1.23, 1.99, 2.01, 2.51, 3.45]
rounded = []

for number in precise:
 rounded_number = round(number)
 rounded.append(rounded_number)

precise = [1.23, 1.99, 2.01, 2.51, 3.45]
rounded = [round(number) for number in precise]

Unpacking a List Comprehension
• This is the syntax of a list comprehension:
new_list = [expression for item in list]

precise = [1.23, 1.99, 2.01, 2.51, 3.45]
rounded = []

for number in precise:
 rounded_number = round(number)
 rounded.append(rounded_number)

precise = [1.23, 1.99, 2.01, 2.51, 3.45]
rounded = [round(number) for number in precise]

Another example

• Creating a new list, containing the values transformed from another list:

• Remember: new_list = [expression for item in list]

• The new list cleaned_text is ['and', 'is', 'however']

raw_text = [' and ', ' is ', ' however ']
cleaned_text = []

for word in raw_text:
 word_no_spaces = word.strip()
 cleaned_text.append(word_no_spaces)

raw_text = [' and ', ' is ', ' however ']
cleaned_text = [word.strip() for word in raw_text]

List comprehensions with added if

• It is possible to also filter with an if at the same time:
new_list = [expression for item in list if condition]

small_integers = [1,2,3,4,5,6,7,8,9]
even_integers = []

for number in small_integers:
 if number % 2 == 0:
 even_integers.append(number)

small_integers = [1,2,3,4,5,6,7,8,9]
even_integers = [number for number in small_integers if number % 2 == 0]

Specific reading for list comprehension

• If you are lost:
• Lubanovic (2019) Introducing python –2nd Ed.

• Chapter 7: Create a List with a Comprehension
• This is clear and about two pages long

References and Lists - a trap for the unwary

• In python, the value held in the list variable is a reference
• not the actual values

• References are a new concept
• References can be thought of as addresses. With a street address, you should be

able to find a house
• References are memory addresses. With a reference, python knows where to find

the value of a variable
• The value stored in the list name variable is the reference

12 Easy St

a_list = [‘a’, ‘b’, ‘c’, ‘d’]

a_list [‘a’, ‘b’, ‘c’, ‘d’]

b_list = a_list

Where does b_list point?b_list

A List is an address
• If you forget that your list variable is a reference, you might get a

surprise:
>>> a_list = [‘zero’, ‘one’, ‘two’]
>>> print(a_list)
[‘zero’, ‘one’, ‘two’]
>>>
>>> b_list = a_list
>>> b_list[1] = ‘four’
>>>
>>> print(a_list)
[‘zero’, ‘four’, ‘two’]
>>>
>>> id(a_list)
140384948070336
>>> id(b_list)
140384948070336
>>>

Same address!

When in doubt, make copies
copy_list = original_list[:]
another_copy = orginal_list.copy()

>>> a_list = [‘zero’, ‘one’, ‘two’]
>>> b_list = a_list[:]
>>> c_list = a_list.copy()
>>>
>>> id(a_list)
140384948070336
>>> id(b_list)
140384944782144
>>> id(c_list)
140384948106240
>>>
>>> b_list[1] = ‘four’
>>> c_list[2] = ‘five’
>>> print(b_list)
[‘zero’, ‘four’, ‘two’]

Graphically:

Multi-dimension lists
• Remember, that lists may contain other lists:
>>> a_list = [‘zero’, ‘one’, ‘two’]
>>> b_list = [0.11, 1.03, 2.01]
>>> c_list = [0, 1, 2]
>>>
>>> list_of_lists = [a_list, b_list, c_list]
>>> list_of_lists
[['zero', 'one', 'two'], [0.11, 1.03, 2.01], [0, 1, 2]]
>>>
>>> list_of_lists[0][2]
'two'
>>> list_of_lists[1][0]
0.11
>>>
>>> another_list_of_lists = list_of_lists.copy()
>>> another_list_of_lists[0][2] = ‘three’
>>> list_of_lists
[['zero', 'one', ‘three'], [0.11, 1.03, 2.01], [0, 1, 2]]

deepcopy() of multi-dimensional lists

>>> import copy
>>>
>>> a_list = [‘zero’, ‘one’, ‘two’]
>>> b_list = [0.11, 1.03, 2.01]
>>> c_list = [0, 1, 2]
>>>
>>> list_of_lists = [a_list, b_list, c_list]
>>> list_of_lists
[['zero', 'one', 'two'], [0.11, 1.03, 2.01], [0, 1, 2]]
>>>
>>> another_list_of_lists = copy.deepcopy(list_of_lists)
>>>
>>> id(list_of_lists[0])
140384948106432
>>> id(another_list_of_lists[0])
140384948110784

• deepcopy() will copy very deep multi-dimensional lists

Passing lists to functions as arguments
• Be aware that when you pass a list to a function, you are just passing

the address:

• Output:
[0, 1, 2, 3, 4]

[0, 1, 2, 3, 4]

def bad_sort(input_list):
 input_list.sort()
 return input_list

original_list = [4, 2, 1, 0, 3]

new_list = bad_sort(original_list)

print(original_list)
print(new_list)

Advice for using lists (Think Python Ch 10)

1. Most list methods modify the argument (the list itself) and return
None. Watch out that you aren’t doing this:

2. There are so many ways to manipulate lists – choose your style and
don’t worry about what you don’t use.
• For example, pop(), del and remove() all kind-of do the same thing – but

the different ‘features’ of each specific method might catch you by surprise.

3. Make copies of most of your lists (especially if they are small) to
avoid inadvertently modifying other lists via references

(or spend hours debugging your code)

Exercises

• Exercises 10-1, 10-3 and 10-4, Think Python Ch. 10

Reading

• Think Python Ch 10
• But do have a look at Lubanovic (2019) Introducing python (ch. 7) if

list comprehensions were a little bit incomprehensible to you.

Tuples
COMP1730/COMP6730

Reading: Textbook chapter 12 : Alex Downey, Think Python, 2nd Edition (2016)
Sections: Tuples are immutable, Tuple assignment, Tuples as return values

Lists versus Tuples

• Both a sequences.
• Lists are mutable. Tuples are immutable. Otherwise, they are very

similar.
• There are good reasons for using tuples in certain circumstances:

• Performance – if a list won’t change, the python interpreter can make
optimisations

• Hands off – sometimes it is better to not be able to change (or have
something else change) the values in your sequence.

Tuples?

• Tuples are immutable. So think of them like lists that can’t be changed.
• A comma-separated sequence of values (with or without parentheses):

• Create with a trailing comma:

• Or with the the tuple() function:

Tuples work mostly like lists

• Elements in a tuple can be accessed by indexes:

• And slices can be made from tuples:

• But they can’t be changed:

Why, tuples?

• They make excellent return values from a function

• And are good protection from unintended side-effects of functions on
your data structures

Exercises

• Only if you want – try a few at the end of Think Python Ch. 11

Reading

• Think Python Ch 11

