Lecture Roadmap

* Intro to Programming
e Variables

* Functions
* The stack
* Scope

* Flow control
e 1f
* while
e for

* Strings

* Lists

* Tuples

* Dictionaries

Australian
National
University

Tuples

COMP1730/COMP6730

Reading: Textbook chapter 12 : Alex Downey, Think Python, 2" Edition (2016)
Sections: Tuples are immutable, Tuple assignment, Tuples as return values

Australian
National
University

Lists versus Tuples

National
University

* Both a sequences.
* Lists are . Tuples are . Otherwise, they are very

similar.

* There are good reasons for using tuples in certain circumstances:
* Performance — if a list won’t change, the python interpreter can make
optimisations
* Hands off — sometimes it is better to not be able to change (or have
something else change) the values in your sequence.

Tu p | e S ? Australian

University

* Tuples are immutable. So, think of them like lists that can’t be changed.
* A comma-separated sequence of values (with or without parentheses):

>>>t= lal, Ibl, lcl, Idl, lel

* Create with a trailing comma:

>>> tl1 = 'a',
>>> type(tl)

<class 'tuple'>
* Or with the the tuple () function:

>>> t = tuple('lupins')
>>> t

(lll, |ul, lpl, |il, lnI, |Sl)

Tuples work mostly like lists

* Elements in a tuple can be accessed by indexes:

>>>t=(la|, lbl, 'C‘, ldl, le|)
>>> t[0]

* And slices can be made from tuples:

>>> t[1:3]
(', 'c')

* But they can’t be changed:

>>> t[0] = 'A'

TypeError: object doesn't support item assignment

Australian
National
University

W hy, t U p | e S ? Australian

University

* They make excellent return values from a function

* And are good protection from unintended side-effects of functions on
your data structures

Exercises

Australian
National
University

* Only if you want — try a few at the end of Think Python Ch. 11

Reading

* Think Python Ch 11

Files and 10

COMP1730/COMP6730

Reading: Ch 14 : Alex Downey (2016) Think Python, 2" Ed
(sections: Persistence, Reading and Writing, Filenames and Paths, Pickling)
OR
Australian Ch 9: Sweigart (2019) Automate the boring stuff with python
(sections: Files and File Paths, File Reading/Writing Process)

University

Persistence (Think Python, Ch14)

National
University

* When your program is executed, it has no memory of any previous
time it may have been run. And nothing in memory will survive after

the program exits.

* Persistence is the concept of retaining this information or memory
between program execution instances

* This is commonly done by storing input and output files on disk

 Also in databases (which are the subject of semester-long courses by
themselves)

* And with python, can use pickle to create dumps of program
memory that can be reread at another time

* But, importantly, reading files into your program provides access to
data

Files and writing programs

* Why would you need to read
or write to a file with your
program?

 Files are a very simple kind of
persistent storage

* Read in data — write out data
after performing some
computation

* Files may contain
configuration information

* Much of data science involves
looking at datasets contained
in files

Australian
National
University

The human genome is routinely stored like this, in

FASTA files.

Here is the beginning Chromosome 1:
>Chrl
TGCTGTCAAGACTTTAAATAGATACAGACAGAGCATTTTCACTTTTTCCT
ACATCTCTATTATTCTAAAAATGAGAACATTCCAAAAGTCAACCATCCAA
GTTTATTCTAAATAGATGTGTAGAAATAACAGTTGTTTCACAGGAGACTA
ATCGCCCAAGGATATGTGTTTAGAGGTACTGGTTTCTTAAATAAGGTTTT
CTAGTCAGGCAAAAGATTCCCTGGAGCTTATGCATCTGTGGTTGATATTT
TGGGATAAGAATAAAGCTAGAAATGGTGAGGCATATTCAATTTCATTGAA
GATTTCTGCATTCAAAATAAAAACTCTATTGAAGTTACACATACTTTTTT
CATGTATTTGTTTCTACTGCTTTGTAAATTATAACAGCTCAATTAAGAGA
AACCGTACCTATGCTATTTTGTCCTGTGATTCTCCAAGAACCTTCCTAAG
TTATTCTACTTAATTGCTTTATCACTCATATGAATGGGAATTTCTTCTCT
TAATTGCTGCTAATctcccccatcttcaaatactctaccgggettctgga
acaccacagcttcctggctttttctcctacctcctgggcaagtccttccc
tgtgtcttttgttgagtgttcctcatctgcttaactaccaatcaacctat
tgcccctaatttgatctttggectgttttcacttagattctatccctacg
tatcacccattcccacagcectttaatcaccatctaaacactaggggctctc

Comma-separated values (CSV) files

Australian
National
University

* A very common data file type is the comma-separated-values and

tab-separated-values format.

* Think of these as spreadsheet data files, where the columns are
separated by either a comma or a tab:

W o N WN R

chr
chrl
chr3
chrl
chr3
chr10
chr19
chr12
chr7
chr7
chr21
chr2

A

B

start
214639824
37324438
214639824
37324438
58361241
20691239
48939558
22135941
107186264
34791811
50465308

©

end
214647498
37327923
214647498
37327923
58394637
20807494
48941286
22167246
107186779
35049442
50553123

Qs

D

119
62
111
59
100
75
197
74
110
89
122

CN

E

call
3 DUP
3 DUP
3 DUP
3 DUP
3 DUP
3 DUP
1 DEL
4 DUP
1 DEL
3 DUP
3 DUP

F

G H

sample cluster
09C100236 1_1
09C100236 1_1
10C105228 1_1
10C105228 1_1
AU123A 118
98HIOS54A '1_20
DEASD_00141_22
8.0001E+10 1_3
ASDFI_1166 1_3
DEASD_02311_6
09C83751 1.8

site_name site_count site_freq

var_1086_DL
var_1129_DL
var_1086_DL
var_1129_DL
var_32483_C
var_3630_DL
var_39923_C
var_64984_C
var_65108_C
var_69723_C
var_20436_C

J

K

9 0.0003261
4 0.00014493
9 0.0003261
4 0.00014493

0

0

78 0.00282619

0

© ©O oo

0

o © O o

5

M

10 0.00036233

4 0.00014493
10 0.00036233
4 0.00014493
0 0
85 0.00307982
0 0
0 0
0 0
0 0
3 0.0001087

N

non_diploid_ non_diploid_ num_exons

[y

[
O WNR WRRRERNRN

chr,start,end,QS,CN,call,sample,cluster,site_name,site_count,site_freq,non_diploid_count,non_diploid_freq,num_exons
chr1,214639824,214647498,119,3,DUP,09C100236,1_1,var_1086_DUP,9,0.000326099,10,0.000362332,2

chr3,37324438,37327923,62,3,DUP,09C100236,1_1,var_1129_DUP,4,0.000144933,4,0.000144933,1

chrl1,214639824,214647498,111,3,DUP,10C105228,1_1,var_1086_DUP,9,0.000326099,10,0.000362332,2

chr3,37324438,37327923,59,3,DUP,10C105228,1_1,var_1129_DUP,4,0.000144933,4,0.000144933,1
chr10,58361241,58394637,100,3,DUP,AU123A,1_18,var_32483_DUP,0,0,0,0,11

chr19,20691239,20807494,75,3,DUP,98HI0554A,1_20,var_3630_DUP,78,0.002826189,85,0.003079822,1

chr12,48939558,48941286,197,1,DEL,DEASD_0014_001,1_22,var_39923_DEL,0,0,0,0,3

An example — Variant Call Format

[- Australian
=/ National

* More complicated example
of file storage of data.

* This is a Variant Call Format
file — for storing the genetic
variation information
identified from a personal
genome sequence

* Not-quite human readable,
but the industry standard.

e Every industry has its’ own
standards — probably mostly
text format, though some
more sophisticated

=~ University

##fileformat=VCFv4.3

##fileDate=20090805

##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36. fasta

##contig=

<ID=20, length=62435964, assembly=B36,md5=f126cdf8a6be@c7f379d618ff66beb2da, species
="Homo sapiens", taxonomy=x>

##phasing=partial

##INFO=<ID=NS,Number=1, Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1, Type=Integer,Description="Total Depth'>
##INFO=<ID=AF,Number=A, Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1, Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2,Number=0, Type=Flag,Description="HapMap2 membership'>
##FILTER=<ID=q10@,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1, Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1, Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1, Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2, Type=Integer,Description="Haplotype Quality">

#CHROM POS ID REF ALT QUAL FILTER INFO

FORMAT NA00001 NA00002 NA00003

20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2
GT:GQ:DP:HQ ©|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.

20 17330 5 T A 3 qle NS=3;DP=11;AF=0.017
GT:GQ:DP:HQ ©0@0:49:3:58,50 ©0|1:3:5:65,3 0/0:41:3

20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;
AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2]|1:2:0:18,2 2/2:35:4

20 1230237 . T 5 47 PASS NS=3;DP=13; AA=T
GT:GQ:DP:HQ ©|@0:54:7:56,60 ©0|0:48:4:51,51 0/0:61:2

20 1234567 microsatl GTC G,GTCT 50 PASS NS=3;DP=9; AA=G

GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3

What is a file?

Australian
National
University

* Afile is a collection of data on secondary storage (hard drive, USB key,
network file server)

* A program can open a file to read/write data

* The data in a file is a sequence of bytes (integer values 0 to 255):
* A program reading a file must interpret the data (as text, image, sound, etc)

* Python and the operating system (OS) provide support for interpreting the
data as text

* Text vs Binary files:

* A text file contains printable characters (including numbers, spaces, newlines,
etc)

* A binary file contains arbitrary data which may not correspond to printable
characters. May not be viewed is a simple text editor.

Anatomy of a text file

Australian
National
University

* Characters are commonly encoded as ‘ASCI| text’:

7#5%8&" () *+,-./0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\]"-"abcdefghijklmnopgrstuvwxyz{ |}~

* Lines in a text file commonly end with a newline (\n) character

* Non-printing characters include tabs (\ t), spaces (\ s) and other
escape characters

chr,start,end,QS,CN,call,sample,cluster,site_name,site_count,site_freq,non_diploid_count,non_diploid_freq,num_exons
chr1,214639824,214647498,119,3,DUP,09C100236,1_1,var_1086_DUP,9,0.000326099,10,0.000362332,2
chr3,37324438,37327923,62,3,DUP,09C100236,1_1,var_1129_DUP,4,0.000144933,4,0.000144933,1
chr1,214639824,214647498,111,3,DUP,10C105228,1_1,var_1086_DUP,9,0.000326099,10,0.000362332,2 Invisible newline
chr3,37324438,37327923,59,3,DUP,10C105228,1_1,var_1129_DUP,4,0.000144933,4,0.000144933,1
chr10,58361241,58394637,100,3,DUP,AU123A,1_18,var_32483_DUP,0,0,0,0,11 characters at end of

chr19,20691239,20807494,75,3,DUP,98HI0554A,1_20,var_3630_DUP,78,0.002826189,85,0.003079822,1 each line
chr12,48939558,48941286,197,1,DEL,DEASD_0014_001,1_22,var_39923_DEL,0,0,0,0,3

Anatomy of a binary file

Australian
National
University

* Binary files can contain anything that the developer of the specific

binary file designed.

If you open a binary file as if it were a text file, you might see this:

calcexe - Notepad

nat

MZ i vy a o ”n 1! kI!Y)n; pvograr cannot be run in DOS .

b AEtanaaine Bt =Op | = OLLIS et 0® o= 0%t =0™ P« s =00« s -0 21 ¥ 4i-0<p¥«
o L-87e HALAL »«5
HL|Q#e b0 Ae H<OI; An, 84y EDS W42+~ MESX, LXuSx, L%-Sp, fOL-§°, &0f

L<«CHL|De @q| L ,SE H"so N - WMSE ok A AL Ep CayyyHlys/4= 30MES/C DB, x-00!|
as EIEE A0Vt A AN y\,zN.\Qo eKq @2 N HeOI;AtHL cyM ol ; It-yid- HDHTY | eH ln, !
IWHSY TanI« QML EeH L ILAAOMENA\SOH ISBHtSOHTA m«?zo N!)N}ONDS)\LI DB n1

IAG HA\SOHSA _AHK\ SOk 1 SiHAt
At foume U, »4' @ Hegp OyL" - m, "y @ fode t» * H\SOMTADA\A cigme T <Eys

D948, | HKIHTSOA, | yiCh| AjAx My, «SgHIysh,- © Hlym, ¢ D«AlG ¥, ~uI

1S8HLSBHSA _AHRIH er QUMK S4HLTS 1Lt S WAYAUMAWijl <I13yE AT <AL <UL <&M < pRT < AZD!

TYEHS A xudb g o, 20y PRI\ SPH « | S4A CAALRKDéEC, Hiufaf) L HER) LAl «-HELK, E&O

oL, EEbyyH; udnf 1=t H<E) <L ABH <oM < <EHYCHH «<SH<AHOCORT Ay L M aKHH; KORS , =+ H«C (Hh<f Hydeef| oM L AUYYH use)L
\v.Ann.) Mgl)iphyyyn..xmunn 110~ H3AHL, SO A<M <@H <UE 3aA UL SASBLLASOL RASHLAASPLAASXDEAS DRAS LEAShAfEY®

YOMOR,.bby M;pr 1Py @ H\S HfA A JAAATAN A JAHL), Sm'-.lslmrs WATAUAVAWHIPy H<|Of- H3AHL, S50,
A Ife uuM; Po‘ fORtyiedl WCoifA (Afe ") °cyyw I | HeOM<Een °*° S nw- Srw nATAuﬂ '
HH/LOHRAZ | @ ASTOSAH «ES MI\.OnyAl A_AAATAN BAx— fD; AT1M 1- A
f/+* HyA {4-‘ Hy¥% -\!‘J.I Hy' 1, # HfyPr, 4. Ht H]onzg_ - yy),"a g, ! n
He StAlkey OuAedAf B Af eCH«IHAGH AAAIDfo mgly FA;Tx \$8e Him| H<Ee,OyyA:As

«

Figure 9-6: The Windows calc.exe program opened in Notepad

- exe HW° €D9-87¢ 1 Y&, 3EVIEL- M r.-n- H =2 AP 3¢ n.».S(,
SO RO A LETIH"SX,

O0A PA HLDSpH; xa M & T
A; OM%] o« 'S e~ yyH ol A, €y Hite ' QCIyyH«OI; £n, n€y DUNGI <ATTSOH+OM: [Ny NL(VN EHLHIEHLK e IL&D‘ Oev

{ b L HANR| H Eu:OnA
SMIJAINTSIMCO, O~vH<0E < 30Lx IM_ELO3AHLDSPfu w0 MEL:L« ISPI EIAEC < »ayyy H'OHWT <1 A-"OAU H)An\eu¢$’e»\H Ln-

HETSTHALS WATAUHSY L« <OL <A1 < tA<EA<DD<PRL «CR<PRL < *0; OAILOE 3TA; OASLO) PRH « tH <})Qc A <DH .

Helcoy+OF| 30; s, nhyyn DS M« IS[)HH(P yyye HIAH_ A]I’Au..\smusmu 1 HenD AHfAv <A 3yH <RA; 007 Oyy 0~4f :
gnuAlAuA\Awnhm 1L <0 <REE <\PE « «NJDVAELE 31 3y 30E ; 1EX0AD; OF < 2AsLO%-S D+aALS & |Xyyt
\SHEISHHEEStWHEY «-0I- H<U<IJe ° 'y SiQet H<EM« DL CAH 09| oyy <0’ € TyyH<0Fp As D}
JEEL <@ HOE- yimA| H<EYALA| H<AE- yi2A| Hfy 107y H<XE- HfA{Y:SA| @A®yy ., ayye?°yy®eyyyyigX| €0

WOH < TSXEOVDH OLBsE R VRO 4 lj(‘fl

Sweigart (2019) Automate the boring stuff

with Python, Ch. 9.

Files and directories:

Australian
National
University

* Files on secondary storage are organized into directories (aka folders)

* This is an abstraction provided by the operating system

* The directory structure is typically tree-like

* File locations can be represented in text form by a file path:
/Users/dan/Desktop/Gray etal SupplementaryTable S2 cleaned.csv

v

File System
P @i bin
P [boot
P [dev
v ua etc
P [acpi
P (@ alternatives
P [apm
P @ apparmor
P [apparmor.d
P [apport
v um apt
P [apt.conf.d

£

I_ Users
I_ Al

I_ Documents

I_ project.docx

Figure 9-1: A file in a hierarchy of folders

Sweigart (2019) Automate the boring stuff

with Python, Ch. 9.

Where are you (in the filesystem)?

Australian
National
University

* In your code, you aren’t able to point-and-click your way around.
* Find out the directory ‘path’:

>>> import os
>>> cwd = os.getcwd()
>>> cwd

'/home/dinsdale'’

* And you can list the files in the directory with:

>>> os.listdir(cwd)

['music', 'photos', 'memo.txt']

Downey (2015) Think Python, 2" Ed.

Australian
National

The file ‘path’:

* A path is a string that identifies the location of a file in the directory
structure

* Consists of the hierarchical directory names in sequence, with a separator
between each (the forward-slash /)
* You will see two kinds of paths:

* Full or absolute (from the top-level directory)
 Relative (to the current working directory)

* When running a python file (script mode), the current working directory
(cwd) is the directory that is was started/executed from

* |f the python interpreter was started in interactive mode (iPython or the
console), the cwd is the directory that it was started from

* The os module has functions to get (and change) the current working
directory:

>>> import os
>>> 0s.getcwd()
' /home/patrik/teaching/python’

open ()and close () file syntax:

National
University

* To open a file, use open (filename, mode)

* The file open modes can be:

e r :read
* w :write
* x :write, but only if the file doesn’t already exist
a :append, by writing after the last line of the existing file

* To close a file, use close ()

Writing to a file

Australian
National
University

* To write to a file, first it needs to be opened (in write mode):

>>> fout = open('output.txt', 'w')
e fout is an object that allows you to access this open file
e With the fout, you may then write to the file:

>>> linel = "This here's the wattle,\n"

>>> fout.write(linel)

>>>]line2 = "the emblem of our land.\n"

>>> fout.write(line2)

* Then, it is a good habit to remember to close the file*:

>>> fout.close()

Downey (2015) Think Python, 2" Ed.

Read a file (Think Python, Ch 9)

Australian
National
University

e Use the open () command again, but not in write mode:

>>>

>>> fin = open('output.txt', 'r')
>>>

>>> fin.readline()

"This here's the wattle,\n"

>>> fin.readline()

"the emblem of our land.\n'
>>>

>>> fin.close()

>>>

* Use readline () method to get the next line from the file.
* Note that each line returned is a string — and has a newline at the end

* Then close () thefile. You can’t read the file once it is closed

File objects

* When we open a file, python creates
a file object (or, more abstractly, a
stream object)

* The file object is our interface to the
file: all reading and writing is done
through methods of this object

* The type of file object (and what we
can do with it) depends on the access
mode specified when the file was
opened (ie. read-only, write-only,
append-only)

>>>

Australian
National
University

>>> fin = open('/Users/dan/Downloads/example.csv’,

>>>

>>> type(fin)

<class
>>>

'_10.TextIOWrapper'>

'r")

File Objects

Australian

|~4\\'/ National
=7 University

* What are these objects and clas
interaction with a file?

* This file object is

<class ' i10.TextIOWrapper’>

e Reach for documentation.

https://docs.python.org/3/library/io.html

* Searched for Text IOWrapper

 The documentation says that
Text IOWrapper inherits from
TextIOBase

e TextIOBase is the class with the familiar
readline () andwrite () methods

Table of Contents

io — Core tools for
working with streams
= Overview
= Text 1/O
= Binary I/O
= Raw I/O
= Text Encoding
= Opt-in
EncodingWarning
= High-level Module
Interface
= Class hierarchy
= |/O Base Classes
= Raw File I/O
= Buffered Streams
= Text I/O
= Performance
= Binary I/O
= Text |/O
= Multi-threading
= Reentrancy

Previous topic
os — Miscellaneous

operating system interfaces

Next topic
time — Time access and
conversions

This Page

Report a Bug
Show Source

«

class io.TextIOBase

Base class for text streams. This class provides a character and line based interface to stream 1/0.
It inherits I0Base.

TextIOBase provides or overrides these data attributes and methods in addition to those from
I0OBase:

encoding
The name of the encoding used to decode the stream’s bytes into strings, and to encode
strings into bytes.

errors
The error setting of the decoder or encoder.

newlines
A string, a tuple of strings, or None, indicating the newlines translated so far. Depending on
the implementation and the initial constructor flags, this may not be available.

buffer

The underlying binary buffer (a BufferedIOBase instance) that TextI0OBase deals with. This is
not part of the TextIOBase APl and may not exist in some implementations.

detach()
Separate the underlying binary buffer from the TextIOBase and return it.

After the underlying buffer has been detached, the TextIOBase is in an unusable state.

Some TextIOBase implementations, like StringI0, may not have the concept of an underlying
buffer and calling this method will raise UnsupportedOperation.

New in version 3.1.

read(size=- 1, /)
Read and return at most size characters from the stream as a single str. If size is negative or
None, reads until EOF.

readline(size=- 1, /)
Read until newline or EOF and return a single str. If the stream is already at EOF, an empty
string is returned.

File objects are iterable

<=/ National
=7 University

* Iterable objects are those that a for loop can work with

* The file stream objects created with open (‘filename’, ’"r’)
are iterable

* For example, can list the contents of a file with this:

File position

National
University

A file is a sequence of bytes
* though the file object is not a sequence

* The file object does keep track of where in the file it is reading from
or writing to
* The next read operation (or iteration) starts from the current position

* When a file is open for reading (mode ‘r’) the starting position is 0
(the beginning of the file)

* The file position does not correspond to the line number

File position with tell () and seek ()

Australian
National
University

* You can programmatically find the present position in the file with
tell (). This will return the present position in ajig

211

the file start): 301
395

csv_file = '/Users/dan/Desktop/example.csv’ ‘5”552
651

with open(csv _file, 'r') as fin: 730
line = fin.readline () 804
while line: o
print (fin.tell()) 1033

line = fin.readline () >>>

* seek () can be used to change the position in the file.

* When a file has been iterated through, the way to go back to the
beginning is to use seek (0)

File Buffering

National
University

* File objects typically have an I/O buffer
* Constant access to the disc can be slow and buffering this activity makes sense
* Writing to the file object adds data to the buffer
 When buffer is full, all data in the buffer is written to the file (‘flushing’ the
buffer)

* Closing the file flushes the buffer

* If the program stops without closing (witha close ()), the buffer may not
have been flushed and written to file.

* So you might end up with missing text
* Always close the file when finished an open ()

wlth

Australian
National
University

* The with statement can simplify closing files and is recommended in
modern python - though it is not mentioned in any of our books(!)

* But is a useful shorthand that you may see in code that you read.

* with syntax:

with open (filename,

mode)

as file obj name:

line = file obj name.readline ()

print (1line)

* Note that the absence of the close ()

* |t just works

Checking a file exists ()

Australian
National
University

» Before trying to open a file, it is always good to check it exists
* You can go:

>>>
>>> import os

>>> 0s.path.exists('output.txt')
True
>>>

* This may save you from an error message — and you could gracefully
print a message that the file wasn’t found.

Caution — file over-writing

Australian
National
University

* When using write mode (‘w’):
* There will be no pop-up message if you are about to overwrite an existing file

* Inadvertent over-writing or ‘clobbering’ your file (https://en.wikipedia.org/wiki/Clobbering)
* The file will be gone

* Can we check if an existing file will be over-written? Yes

* Withos.path.exists (filepath)

* And if it exists, do something else. Like alert the user.
* Use other file access modes:

* w:write

» x: write if file doesn’t already exist

* a:append to file

https://en.wikipedia.org/wiki/Clobbering

Trying to open a file that isn’t there

.| Australian

== National
=~ University

* Exceptions occur when you try to open a file that doesn’t exist:

>>> fin = open('bad file')

IOError: [Errno 2] No such file or directory: 'bad file'

* (Sneak preview) Handling these exceptions gracefully:

try:
fin = open('bad file')
except:

print('Something went wrong.')

Downey (2015) Think Python, 2" Ed.

Putting this all together with a CSV file

Input file path: /Users/dan/Desktop/example.csv

chr,start,end,QS,CN,call,sample,cluster,site_name,site_count,site_freq,non_diploid_count,non_diploid_freq, num_exons
chrl,214639824,214647498,119,3,DUP,09C100236,1_1,var_1086_DUP,9,0.000326099,10,0.000362332,2
chr3,37324438,37327923,62,3,DUP,09C100236,1_1,var_1129_DUP,4,0.000144933,4,0.000144933,1
chrl,214639824,214647498,111,3,DUP,10C105228,1_1,var_1086_DUP,9,0.000326099,10,0.000362332,2
chr3,37324438,37327923,59,3,DUP,10C105228,1_1,var_1129_DUP,4,0.000144933,4,0.000144933,1
chr10,58361241,58394637,100,3,DUP,AU123A,1_18,var_32483_DUP,90,0,0,0,11
chrl9,20691239,20807494,75,3,DUP,98HI0554A,1_20,var_3630_DUP,78,0.002826189,85,0.003079822,1

chri2, 48939558, 48941286,197,1,DEL, DEASD_0014_001,1_22,var_39923_DEL,0,0,0,0,3
chr7,22135941,22167246,74,4,DUP,80001102141,1_3,var_64984_DUP,0,0,0,0,11
chr7,107186264,107186779,110,1,DEL,ASDFI_1166,1_3,var_65108_DEL,0,0,0,0,2

import os

csv_file = '/Users/dan/Desktop/example.csv'
if not os.path.exists(csv_file):
print ('File [' + csv_file + '] could not be found. ')
lse:
=S ["chr', 'start', 'end']
with open(csv file, 'r') as input file: ['chrl', "214639824', '214647498']
['chr3", "37324438", '37327923']

["chrl', '214639824', '214647498']
line list = line.split(',") ['chr3", "37324438"', '37327923']

for line in input file:

['chrl@', '58361241', '58394637']
['chrl9', '20691239', '20807494']
start = line list[1] ["chri2', "48939558"', '48941286']
['chr7', "22135941', '22167246']
['chr7', '107186264', '107186779']

chr = line 1list[O0]

end = line list[2]

print ([chr, start, end])

Australian
National
University

Another way: the CSV library

* Reading a CSV formatted file is a
common task

e Could use the csv built-in library
https://docs.python.org/3/library/csv.htm

Australian
National
University

1

* The csv library has useful methods
* csv.reader ()
* csv.writer ()

Module Contents

The csv module defines the following functions:

csv.reader (csvfile, dialect='excel', **fmtpararns)

Return a reader object which will iterate over lines in the given csvfile. csvfile can be any object
which supports the iterator protocol and returns a string each time its __next__() method is
called — file objects and list objects are both suitable. If csvfile is a file object, it should be opened
with newline="'". [1] An optional dialect parameter can be given which is used to define a set of
parameters specific to a particular CSV dialect. It may be an instance of a subclass of the Dialect
class or one of the strings returned by the list_dialects() function. The other optional
fmtparams keyword arguments can be given to override individual formatting parameters in the
current dialect. For full details about the dialect and formatting parameters, see section Dialects
and Formatting Parameters.

Each row read from the csv file is returned as a list of strings. No automatic data type conversion
is performed unless the QUOTE_NONNUMERIC format option is specified (in which case unquoted
fields are transformed into floats).

A short usage example:

>>> import csv

>>> with open('eggs.csv', newline='"') as csvfile:
spamreader = csv.reader(csvfile, delimiter=' ', quotechar='|")
for row in spamreader:

. print(', '.join(row))

Spam, Spam, Spam, Spam, Spam, Baked Beans

Spam, Lovely Spam, Wonderful Spam

csv.writer(csvfile, dialect='excel', xxfmtparams)

Return a writer object responsible for converting the user’s data into delimited strings on the
given file-like object. csvfile can be any object with a write() method. If csvfile is a file object, it

cshould he nnened with newline="'"' [11 _An antianal dialect narameter can he aiven which i< ncad

https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html

Another way: the CSV library

Australian
National
University

* Example with the csv built-in library:

import csv

csv_file = '/Users/dan/Desktop/example.csv’

with open(csv_file, 'r') as input file:

csv_in = csv.reader (input file)

for row in csv_in:

chr = row[0] ['chr', '"start', 'end']

['chrl', '214639824', '214647498']
st = ol ['chr3', '37324438', '37327923']
end = row[2] ['chrl', '214639824', '214647498']

['chr3', '37324438', '37327923']
print ([chr, start, end]) ['chrl@', '58361241', '58394637']

['chr19', '20691239', '20807494']
['chri2', '48939558', '48941286']
['chr7', '22135941', '22167246']
['chr7', '107186264', '107186779']
['chr2l', '34791811', '35049442']
['chr2', '50465308', '50553123']

Another way: open files with PANDAS

Australian
National
University

1
I.:I pandas Getting started User Guide APIreference Development Release notes

 What is PANDAS?
* Like the built-in libraries, PANDAS

Input/output ~

is also a python library (but is not
built-in)

* Adds support to python for data
manipulation, analysis and has
data structures for manipulating
numerical tables
(https://pandas.pydata.org/docs/)

e All sorts of other useful functions:

* read csv ()

* read json|()

. read:html

* read parquet ()
* read excel()

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read csv.html

pandas.read_pickle
pandas.DataFrame.to_pickle
pandas.read_table

pandas.read_csv
pandas.DataFrame.to_csv
pandas.read_fwf
pandas.read_clipboard
pandas.DataFrame.to_clipboard
pandas.read_excel
pandas.DataFrame.to_excel
pandas.ExcelFile.parse
pandas.io.formats.style.Styler.to_excel
pandas.ExcelWriter

pandas.read_json
pandas.json_normalize
pandas.DataFrame.to_json
pandas.io.json.build_table_schema
pandas.read_html
pandas.DataFrame.to_html
pandas.io.formats.style.Styler.to_html

pandas.read_xml

pandas.read_csv

pandas.read_csv(filepath_or_buffer, *, sep=_NoDefault.no_default,
delimiter=None, header='infer', names=_NoDefault.no_default,

index_col=None, usecols=Ni , Sq None, prefix=_NoDefault.no_default,

mangle_dupe_cols=True, dtype=None, engine=None, converters=None,
true_values=None, false_values=None, skipinitialspace=False,
skiprows=None, skipfooter=0, nrows=None, na_values=None,
keep_default_na=True, na_filter=True, verbose=False,
skip_blank_lines=True, parse_dates=None, infer_datetime_format=False,
keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True,
iterator=False, chunksize=None, compression='infer', thousands=None,

decimal='."', lineterminator=None, quotechar= , quoting=0,
doublequote=True, escapechar=None, comment=None, encoding=None,
encoding_errors="'strict', dialect=None, error_bad_lines=None,
warn_bad_lines=None, on_bad_lines=None, delim_whitespace=False,
low_memory=True, memory_map=False, float_precision=None,

storage_options=None) [source]

Read a comma-separated values (csv) file into DataFrame.
Also supports optionally iterating or breaking of the file into chunks.
Additional help can be found in the online docs for |0 Tools.

Parameters: filepath_or_buffer : str, path object or file-like object

Any valid string path is acceptable. The string could be a URL. Valid URL

https://pandas.pydata.org/docs/

Open CSV file with pandas.read csv ()

Australian
National
University

* Opening our file and printing what we need is much simpler:

import pandas as pd >>>

>>> print(csv_data[['chr', 'start', 'end']])
chr start end
chrl 214639824 214647498
. _ ’ chr3 37324438 37327923
csv_file = '/Users/dan/Desktop/example.csv chrl 214630824 214647498
chr3 37324438 37327923
chrl® 58361241 58394637
chrl® 20691239 20807494
csv_data = pd.read_csv (csv_file) chr12 48939558 48941286
chr7 22135941 22167246
print (csv_datal[[‘chr’,’start’,’end’]]) chr7 107186264 107186779

chr2l 34791811 35049442
chr2 50465308 50553123

* But what is the object returned by read csv ()?

>>>
>>> type(csv_data)

<class 'pandas.core.frame.DataFrame'>
>>>

* What can we do with a pandas.core.frame.DataFrame?

PANDAS can he

o read binary files

* Includes support for many

binary file format:

read hdf5()
read parquet ()
read excel ()
read pickle()

Format
Type

text

text

text

text

text

text

text

binary

binary

binary

binary

binary

binary

binary

binary

binary

binary

SQL

Data Description

csv

Fixed-Width Text File

JSON

HTML

LaTeX

XML

Local clipboard

MS Excel

OpenDocument

HDF5 Format

Feather Format

Parquet Format

ORC Format

Stata

SAS

SPSS

Python Pickle Format

SQL

Reader

read_csv

read_fwf

read_json

read_html

read_xml

read_clipboard

read_excel

read_excel

read_hdf

read_feather

read_parquet

read_orc

read_stata

read_sas

read_spss

read_pickle

read_sql

Writer

to_csv

to_json

to_html

Styler.to_latex

to_xml

to_clipboard

to_excel

to_hdf

to_feather

to_parquet

to_orc

to_stata

to_pickle

to_sql

i= On this page
CSV & text files
JSON

HTML

LaTeX

XML

Excel files
OpenDocument Spreadsheets
Binary Excel (.xIsb) files
Clipboard
Pickling

msgpack

HDF5 (PyTables)
Feather

Parquet

ORC

SQL queries
Google BigQuery
Stata format

SAS formats
SPSS formats
Other file formats

Performance considerations

B Show Source

https://pandas.pydata.org/pandas-docs/stable/user guide/io.html

Australian
National
University

Pickle files

National
University

* Sometimes it is desirable to store the state of a variable or an object to re-

load in a later program run
* Python does this with Pickle (or with Shelve)

* Pickle creates a string representation of an object, which can stored in a file
or database — and later turned back into the original obiect:

>>> import pickle
>>>t = [1, 2, 3]

>>> pickle.dumps(t)
b'\x80\x03]1g\x00(K\x01K\x02K\x03e. "'

e pickle.dump () strings can be re-loaded with pickle.loads ():

>>> tl1 = [1, 2, 3]

>>> s = pickle.dumps(tl)
>>> t2 = pickle.loads(s)
>>> t2

[1, 2, 3]

%] Australian

Pickle example -

* Writing data objects to a file and reloading later: = University

Exe rC I SeS Australian

National
University

 Exercises in Think Python are very time consuming in this chapter (Ch
14). Focus on your homework instead.

Reading

. EhiI?Ik P);thon Ch 14 (sections: Persistence, Reading and Writing, Filenames and Paths,
ickling

OR

* Automate the boring stuf&r with python Ch 9 (sections: Files and File Paths, File
Reading/Writing Process

