Lecture Roadmap

| Australian

==/ National
=7 University

* Intro to Programming
* Variables

* Functions
* The stack
* Scope

* Flow control
e if
* while
e for

e Strings

e Lists

* Tuples

* Dictionaries

Lists versus Tuples

| Australian
== National

=7 University

* Both a sequences.

* Lists are . Tuples are . Otherwise, they are very
similar.

* There are good reasons for using tuples in certain circumstances:
* Performance — if a list won’t change, the python interpreter can make
optimisations
* Hands off — sometimes it is better to not be able to change (or have
something else change) the values in your sequence.

Tuples

COMP1730/COMP6730

Reading: Textbook chapter 12 : Alex Downey, Think Python, 2" Edition (2016)
Sections: Tuples are immutable, Tuple assignment, Tuples as return values

| Australian
==/ National
=7 University

Tuples? 3 foen

=7 University

* Tuples are immutable. So, think of them like lists that can’t be changed.
* A comma-separated sequence of values (with or without parentheses):

>>>t = 'a', 'b', 'c', 'd', 'e’'

* Create with a trailing comma:
>>> tl = 'a',
>>> type(tl)
<class 'tuple'>

* Or with the the tuple () function:

>>> t = tuple('lupins')
>>> t

(°L°, °w’, °@°, 4%, "m’, "@°)

Tuples work mostly like lists

Australian

==/ National

=7 University
* Elements in a tuple can be accessed by indexes:
>>>t = ('a', 'b', 'c', 'd', 'e")
>>> t[0]
o
* And slices can be made from tuples:
>>> t[1:3]
('b', 'c")
* But they can’t be changed:
>>> t[0] = 'A'
TypeError: object doesn't support item assignment
Exercises - puston
==/ National
=7 University

* Only if you want — try a few at the end of Think Python Ch. 11

Reading

* Think Python Ch 11

Why, tuples?

< Australian

==/ National
=7 University

* They make excellent return values from a function

* And are good protection from unintended side-effects of functions on
your data structures

Files and 10

COMP1730/COMP6730

Reading: Ch 14 : Alex Downey (2016) Think Python, 2" Ed
(sections: Persistence, Reading and Writing, Filenames and Paths, Pickling)
OR
Australian Ch 9: Sweigart (2019) Automate the boring stuff with python
(sections: Files and File Paths, File Reading/Writing Process)

= National

University

Persistence (Think Python, Ch14) Files and writing programs

Australian Australian
National National
University University
* When your program is executed, it has no memory of any previous heh < routinel Sl this 1
time it may have been run. And nothing in memory will survive after * Why would you need to read Ener pon genome 5 routinely stored ke this,in
the program exits. orwriteto a flle Wlth your Here is the beginning Chromosome 1:
. rogeram? >Chrl
* Persistence is the concept of retaining this information or memory P g ' . T TCACACTTT AAATACATACACACACAGCATTTTCACTTTTTCCT
between program execution instances * Files are a very simple kind of ACATCTCTATTATTCTAAAAATGAGAACATTCCAAAAGTCAACCATCCAA
« This i v d b L d fil disk persistent storage GTTTATTCTAAATAGATGTGTAGAAATAACAGTTGTTTCACAGGAGACTA
This is commonly done by storing input and output files on dis « Read in data — write out data ATCGCCCAAGGATATGTGTTTAGAGGTACTGGTTTCTTAAATAAGGTTTT
; : ; i CTAGTCAGGCAAAAGATTCCCTGGAGCTTATGCATCTGTGGTTGATATTT
* Also in databases (which are the subject of semester-long courses by after performing some TOCOATANAATAAACCTAAART CCTCACCCATATTCARTITCATTCAA
themselves) computation GATTTCTGCATTCAAAATAAAAACTCTATTGAAGTTACACATACTTTTTT
« And with ovth Ccklet te d f . Fil tai CATGTATTTGTTTCTACTGCTTTGTAAATTATAACAGCTCAATTAAGAGA
nd with python, can use p1ck.e to create aumps or program lles may contain . AACCGTACCTATGCTATTTTGTCCTGTGATTCTCCAAGAACCTTCCTAAG
memory that can be reread at another time configuration information TTATTCTACTTAATTGCTTTATCACTCATATGAATGGGAATTTCTTCTCT
e Much of data science involves TAATTGCTGCTAATctcccccatcttcaaatactctaccgggettcetgga

. . acaccacagcttcctggetttttctectacctectgggeaagtecttccc
looking at datasets contained J 99 Jggcaag

. tgtgtcttttgttgagtgttcctcatctgettaactaccaatcaacctat
* But, importantly, reading files into your program provides access to in files focccctanttigatetttgocctatttbcact tagatictatcoctacy
data tatcacccattcccacagetttaatcaccatctaaacactaggggcetctc

Comma-separated values (CSV) files An example — Variant Call Format

ﬁustralifn ﬁustralilan
ational ational
. . University University
* A very common data file type is the comma-separated-values and . .
* More complicated example ETIC T TR
p p 2
t b t d I f t ##fileDate=20090805
ab-separated-values format. f file st f dat ##source=nyInputationProgranV3. 1
Of Tile storage or data. ##reference=file:///seq/references/1008GenomesPilot-NCBI36. fasta
. . ##contig=
* Think of these as spreadsheet data files, where the columns are . . <I0=20, length=62435964, assenbly=B36, nds=F126cdf8abe0cT £379d618f feGbeb2da, species
P ’ * This is a Variant Call Format ibonc] piens?] tatoroners
i M . . . ##phasing=partial
separated by either a comma or a tab: file — for Storing the Genetic | srirotoms tumberet ype-tteger bescription=usber of Samples wich data'>
=DP,Number=1, Type=Integer, Description="Total Depth">
& 5 © v E G d U U U 8 L M il 1 1 1 1 F,Number=A, Type=Float,Description="Allele Frequency">
T ed o on al smle lduwr siesame e cum e s loon it ren dbod . e variation information AANuMber—1, Type=String, escript fon="Ancestral Allele"s
i = par, 1086 | H B ##INFO=<ID=DB,Number=0, Type=Flag,Description="dbSNP membership, build 129">
3 s srseas 37321923 & 30UP oscioos 11 var_1125 1 4 000014433 4 000014433 1 . o
4 s 214639824 214647498 11 300p 10c105228 11 var_1086_DL s 00003261 10 000036233 2 Identlfled from a personal xil;[?:;m;:zyl:;mger=0(T{pe:F}39.?ei:r;p{mniaﬂapmnz membership">
5 chr3 37324438 37327923 59 3 DUP 100105228 1.1 var_1129 DU 4 0.00014493 4 0.00014493 1 \=<ID=q10,Description="Quality below =
& 1o Sa361201 58394637 100 30Up Au3A 118 var_32483 ¢ o u genome Sequence ##FILTER=<ID=s50,Description="Less than 50% of samples have data"s>
7 s 20691239 20807454 75 30UP 3HOSSA 120 var 363000 78 oo0zsz61s 85 000307982 1 ##FORMAT=<ID=GT,Nunber=1, Type=String, Description="Genotype">
st | sl oo s 1od pmsponuiz et g ° ° o 2 . ##FORMAT=<ID=6Q, Nunber=1, Type=Integer, Descript ion="Genotype Quality">
101 ar_assa . _ - = e i
B o e Not-quite human readable, #EFORAAT=<ID=DP,tunber=1 Type=Integer, Descript on="fead Depti'>
11 zhr21 34791811 35049442 89, 3 DUP DEASD_02311 6 var_69723 € o 0 0 0 3 . SIS0 Nunbe B2aTypestnteoe g DescriptionZihaptotyneuualityic
2l sodssa08 50553123 2 30U oscEEL 18 var20i6C o 0 3 ocooios7 s but the |ndustry standard. GRS ST L ILT
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2
H H ’ GT:GQ:DP:HQ ©|@:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
L]
chr,start,end,QS,CN,call,sample,cluster,site_name,site_count,site_freq,non_diploid_count,non_diploid_freq,num_exons Every IndUStry has Its own é_ﬁr . Dyag@ B|0.A9 3158 SDT o /; 5165 ; g}: " 3N 3;DP=11;AF=0.017
chr1,214639824,214647498,119,3,DUP,09C100236,1_1,var_1086_DUP,9,0.000326099,10,0.000362332,2 — HAtAE BLERERE BERHR S .
chr3,37324438,37327923,62,3,DUP,09C100236,1_1,var_1129_DUP,4,0.000144933,4,0.000144933,1 standards prObably mOStly ;Z\::T-Dslg?g?upragoﬂﬁ?z:e-23 g;T le‘f’;a.l:‘\gs ’:i;?é‘;:m'AF’“'333'°'657'
chr1,214639824,214647498,111,3,DUP,10C105228,1_1,var_1086_DUP,9,0.000326099,10,0.000362332,2 20 | 1230237 . e 47 PASS NS=3;DP=13;AA=T
chr3,37324438,37327923,59,3,DUP,10C105228,1_1,var_1129_DUP,4,0.000144933,4,0.000144933,1 text format, thOUgh some GT:GQ:DP:HQ 0]0:54:7:56,60 0]0:48:4:51,51 0/0:61:2
chr10,58361241,58394637,100,3,DUP,AU123A,1_18,var_32483_DUP,0,0,0,0,11 icti 20 1234567 microsatl GTC G,GTCT 50 PASS NS=3;DP=0;AA=G
chr19,20691239,20807494,75,3,DUP,98HI0554A,1_20,var_3630_DUP,78,0.002826189,85,0.003079822,1 more sophlstlcated GT:6Q:DP 0/1:35:4 0/2:17:2 1/1:40:3

chr12,48939558,48941286,197,1,DEL,DEASD_0014_001,1_22,var_39923_DEL,0,0,0,0,3

What is a file?

| Australian
==/ National

=7 University
* Afile is a collection of data on secondary storage (hard drive, USB key,
network file server)

* A program can open a file to read/write data

* The data in a file is a sequence of bytes (integer values 0 to 255):
* A program reading a file must interpret the data (as text, image, sound, etc)

* Python and the operating system (OS) provide support for interpreting the
data as text

* Text vs Binary files:
* A text file contains printable characters (including numbers, spaces, newlines,
etc)
* A binary file contains arbitrary data which may not correspond to printable
characters. May not be viewed is a simple text editor.

Anatomy of a binary file

| Australian

—=. National
=7 University

* Binary files can contain anything that the developer of the specific
binary file designed.

* If you open a binary file as if it were a text file, you might see this:

$ITAI HEY 107 HOME- HIAWISAI EA%yy

Sweigart (2019) Automate the boring stuff

with Python, Ch. 9.

Figure 9-6: The Windows calc.exe program opened in Notepad

Anatomy of a text file

< Australian
==/ National

=7 University

* Characters are commonly encoded as ‘ASCII text’:

| 17#5%&" () *+,-./0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\] "~ "abcdefghijklmnopgrstuvwxyz{ |}~

¢ Lines in a text file commonly end with a newline (\n) character

* Non-printing characters include tabs (\ t), spaces (\ s) and other
escape characters

chrstart,end,QS,CN,call,sample,cluster,site_name,site_count,site_freq,non_diploid_count,non_diploid_freq,num_exons
chr1,214639824,214647498,119,3,DUP,09C100236,1_1,var_1086_DUP,9,0.000326099,10,0.000362332,2
chr3,37324438,37327923,62,3,DUP,09C100236,1_1,var_1129_DUP,4,0.000144933,4,0.000144933,1
chr1,214639824,214647498,111,3,DUP,10C105228,1_1,var_1086_DUP,9,0.000326099,10,0.000362332,2
chr3,37324438,37327923,59,3,DUP,10C105228,1_1,var_1129_DUP,4,0.000144933,4,0.000144933,1
chr10,58361241,58394637,100,3,DUP,AU123A,1_18,var_32483_DUP,0,0,0,0,11 characters at end of

Invisible newline

chr19,20691239,20807494,75,3,DUP,98HI0554A,1_20,var_3630_DUP,78,0.002826189,85,0.003079822,1 each ”ne
chr12,48939558,48941286,197,1,DEL,DEASD_0014_001,l_ZZ,var_39923_DEL,D,O,D,D,3
Files and directories: _
= Australian
<= National

=7 University

* Files on secondary storage are organized into directories (aka folders)
* This is an abstraction provided by the operating system
* The directory structure is typically tree-like

* File locations can be represented in text form by a file path:
/Users/dan/Desktop/Gray etal SupplementaryTable S2 cleaned.csv

< &/ File System c\
b (@ bin ’

b [boot I_
b @ dev Users

v etc
b @ acpi Al

b @ alternatives

b (@ apm I_
b @ apparmor
b @ apparmor.d L
b @ apport

~ s apt

b @ apt.conf.d

Documents

project.docx

Sweigart (2019) Automate the boring stuff

with Python, Ch. 9

Figure 9-1: A file in a hierarchy of folders

Where are you (in the filesystem)?

Australian
==/ National
=7 University

* In your code, you aren’t able to point-and-click your way around.
* Find out the directory ‘path’:

>>> import os
>>> cwd = os.getcwd()
>>> cwd

' /home/dinsdale’

* And you can list the files in the directory with:

>>> os.listdir(cwd)

['music', 'photos', 'memo.txt']

Downey (2015) Think Python, 2° Ed.

open ()and close () file syntax:

| Australian
-/ National
University

* To open a file, use open (filename, mode)
* The file open modes can be:
e r :read
* w :write
* x :write, but only if the file doesn’t already exist
* a :append, by writing after the last line of the existing file

* To close afile, use close ()

< Australian
==/ National

The file ‘path’:

* A path is a string that identifies the location of a file in the directory
structure

* Consists of the hierarchical directory names in sequence, with a separator
between each (the forward-slash /)
* You will see two kinds of paths:
* Full or absolute (from the top-level directory)
* Relative (to the current working directory)

* When running a python file (script mode), the current working directory
(cwd) is the directory that is was started/executed from

* If the python interpreter was started in interactive mode (iPython or the
console), the cwd is the directory that it was started from

* The os module has functions to get (and change) the current working
directory:

>>> import os
>>> os.getcwd()
' /home/patrik/teaching/python’

Writing to a file

Australian

== National
= University

* To write to a file, first it needs to be opened (in write mode):
>>> fout = open('output.txt', 'w')

* fout is an object that allows you to access this open file

* With the fout, you may then write to the file:

>>> linel = "This here's the wattle,\n"
>>> fout.write(linel)

>>> line2 = "the emblem of our land.\n"

>>> fout.write(line2)

* Then, it is a good habit to remember to close the file*:
>>> fout.close()

Downey (2015) Think Python, 2% Ed.

* What are these objects and clag .

Read a file (Think Python, Ch 9)

Australian
National
University

* Use the open () command again, but not in write mode:

fin = open('output.txt',

>>> fin.readline()

"This here's the wattle,\n"
>>> fin.readline()

"the emblem of our land.\n'
>>>

>>> fin.close(Q)

>>>

* Use readline () method to get the next line from the file.
* Note that each line returned is a string — and has a newline at the end

e Then close ()

File Objects

interaction with a file?

* This file object is
<class ‘_io.TextIOWrapper’>

* Reach for documentation.

https://docs.python.org/3/library/io.html

the file. You can’t read the file once it is closed

Australian
National
University

Searched for Text IOWrapper

The documentation says that
TextIOWrapper inherits from
TextIOBase

TextIOBase is the class with the familiar
readline () and write () methods

Table of Contents
for

« Raw 1/0
« Text Encoding

« Opt-in
EncodingWarning

Class io.TextIOBase
Base class for text streams. This class provides a character and line based interface to stream 1/0.
It inherits I0Base.

TextT08ase provides or overrides these data attributes and methods in addition to those from
ToBase
encoding
The name of the encoding used to decode the stream’s bytes into strings, and to encode
strings into bytes
errors
The error setting of the decoder or encoder.
newlines
A string, a tuple of strings, or None, indicating the newlines translated so far. Depending on
the implementation and the initial constructor flags, this may not be available.
buffer
The underlying binary buffer (a Buf feredI0Base instance) that TextI0 deals with. This is
not part of the TextI0Base APl and may not exist in some implementations.
detach()
Separate the underlying binary buffer from the Tex ase and return it.
After the underlying buffer has been detached, the TextI0Base is in an unusable state.

Some TextI0Base implementations, like StringT0, may not have the concept of an underlying

buffer and calling this method will raise UnsupportedOperation
New in version 3.1

read(size=- 1, /)
Read and return at most size characters from the stream as a single str. If size s negative or
None, reads until EOF.

readline (size=- 1, /)

Read until newline or EOF and return a single str. If the stream is already at EOF, an empty
string i returned,

File objects

* When we open a file, python creates
a file object (or, more abstractly, a
stream object)

* The file object is our interface to the
file: all reading and writing is done

through methods of this object NG
. . <class '_io.TextIOWrapper'>
* The type of file object (and what we >>>

can do with it) depends on the access
mode specified when the file was
opened (ie. read-only, write-only,
append-only)

File objects are iterable

* Iterable objects are those that a for loop can work with

* The file stream objects created with open (‘*filename’,
are iterable

* For example, can list the contents of a file with this:

Australian

National
University

> fin = open('/Users/dan/Downloads/example.csv’',

Australian
National
University

lrl)

csv_file = '/Users/dan/Desktop/example.csv'
fin = open(csv_file, 'r')

for line in fin:
print (line, end="'"')

fin.close ()

r

D)

File position

National
University

* Afile is a sequence of bytes
* though the file object is not a sequence

* The file object does keep track of where in the file it is reading from
or writing to
* The next read operation (or iteration) starts from the current position

* When afile is open for reading (mode ‘r’) the starting position is 0
(the beginning of the file)

* The file position does not correspond to the line number

File Buffering

National
University

* File objects typically have an I/O buffer
* Constant access to the disc can be slow and buffering this activity makes sense
* Writing to the file object adds data to the buffer
* When buffer is full, all data in the buffer is written to the file (‘flushing’ the
buffer)
* Closing the file flushes the buffer

* If the program stops without closing (with a close ()), the buffer may not
have been flushed and written to file.

* So you might end up with missing text
* Always close the file when finished an open ()

File position with tell () and seek ()

Australian
National
University

* You can programmatically find the present position in the file with
tell (). This will return the present position in ajgy
the file start):

csv_file = '/Users/dan/Desktop/example.csv’

with open(csv_file, 'r') as fin:
line = fin.readline ()
while line:
print (fin.tell ())
line = fin.readline ()

* seek () can be used to change the position in the file.

* When a file has been iterated through, the way to go back to the
beginning is to use seek (0)

W l t h Australian
National

University

* The with statement can simplify closing files and is recommended in
modern python - though it is not mentioned in any of our books(!)

* But is a useful shorthand that you may see in code that you read.
* with syntax:

with open (filename, mode) as file obj name:
line = file obj name.readline ()

print (line)

* Note that the absence of the close ()
* It just works

Checking a file exists ()

Australian
National
University

* Before trying to open a file, it is always good to check it exists
* You can go:

>>>

>>> import os

>>> 0s.path.exists('output.txt')
True
>>>

* This may save you from an error message — and you could gracefully
print a message that the file wasn’t found.

Trying to open a file that isn’t there

Australian
National
University

* Exceptions occur when you try to open a file that doesn’t exist:

>>> fin = open('bad_file')

IOError: [Errno 2] No such file or directory: 'bad_file'

Handling these exceptions gracefully:

try:
fin = open('bad_file')
except:

print('Something went wrong.')

Downey (2015) Think Python, 2° Ed.

Caution — file over-writing

Putting this all together with a CSV file

Australian
National
University

* When using write mode (‘w’):

* There will be no pop-up message if you are about to overwrite an existing file
* Inadvertent over-writing or ‘clobbering’ your file (https://en.wikipedia.org/wiki/Clobbering)
* The file will be gone

* Can we check if an existing file will be over-written? Yes

* With os.path.exists (filepath)

* And if it exists, do something else. Like alert the user.
* Use other file access modes:

* w:write

* x: write if file doesn’t already exist

e a:append to file

Australian
National

Input file path: /Users/dan/Desktop/example.csv University

chr, start,end,QS,CN, call, sample, cluster, site_name,site_count,site_freq,non_diploid_count,non_diploid_freq,num_exons
chrl,214639824,214647498,119,3,DUP, 89C100236,1_1,var_1886_DUP, 9, 0.000326099,10, 0.000362332, 2
chr3,37324438,37327923, 62,3, DUP, 09C100236,1_1, var_1129_DUP, 4,0.000144933, 4,0.000144933, 1

chri, 214639824, 214647498,111,3,DUP, 10C105228,1_1,var_1886_DUP, 9, 0.008326099,10, 0.000362332, 2
chr3,37324438,37327923,59,3,DUP, 100105228, 1_1, var_1129_DUP, 4,0.000144933, 4,0.000144933, 1
chr1e,58361241,58394637,108, 3, DUP, AU123A,1_18, var_32483_DUP,0,0,0,0,11
chr19,20691239,26807494, 75,3, DUP, 98HT0554A,1_20, var_3630_DUP, 78, 0.002826189, 85,0.003079822, 1

chril2, 48939558, 48941286,197,1, DEL, DEASD_0014_001,1_22,var_39923_DEL,0,0,0,0,3
chr7,22135941,22167246, 74, 4,DUP, 80001102141,1_3, var_64984_DUP,@,0,0,0,11
chr7,107186264,167186779,110, 1, DEL, ASDFI_1166,1_3, var_65108_DEL,0,0,0,0,2

import os

csv_file = '/Users/dan/Desktop/example.csv'
if not os.path.exists(csv_file):

print('File [' + csv_file + '] could not be found. ')

else:
with open(csv_file, 'r') as input file:
for line in input_file:
line_list = line.split(',')
chr = line_list[0]
start = line_list[1]

end = line list[2]

print([chr, start, end])

Another way: the CSV library

* Reading a CSV formatted file is a
common task

* Could use the csv built-in library

https://docs.python.org/3/library/csv.htm
1

* The csv library has useful methods
* csv.reader ()
e csv.writer ()

Another way: open files with PANDAS

Australian
National
University

Module Contents

The csv module defines the following functions:

csv.reader(csvfile, dialect='excel', ¥kfmtparams)
Return a reader object which will iterate over lines in the given csvfile. csvfile can be any object
which supports the iterator protocol and returns a string each time its _next__() method is
called — file objects and list objects are both suitable. If csvfile is a file object, it should be opened
with newline="". [1] An optional dialect parameter can be given which is used to define a set of
parameters specific to a particular CSV dialect. It may be an instance of a subclass of the Dialect
class or one of the strings returned by the list_dialects() function. The other optional
fmtparams keyword arguments can be given to override individual formatting parameters in the
current dialect. For full details about the dialect and formatting parameters, see section Dialects
and Formatting Parameters.

Each row read from the csv file is returned as a list of strings. No automatic data type conversion
is performed unless the QUOTE_NONNUMERIC format option is specified (in which case unquoted
fields are transformed into floats).

A short usage example

>>> import csv

>>> with open('eggs.csv', newline='') as csvfile:
o spanreader = csv.reader(csvfile, delimiter=' ', quotechar='|"
for row in spamreader:

5 print(*, '.join(row))

Spam, Spam, Spam, Spam, Spam, Baked Beans

Spam, Lovely Spam, Wonderful Spam

csv.writer(csvfile, dialect='excel', *xfmtparams)
Return a writer object responsible for converting the user's data into delimited strings on the
given file-like object. csvfile can be any object with a write() method. If csvfile is a file object, it

chauld ha nnened with newline='! [11_An antinnal dislart naramatar ran ha niven which i

scad

Australian
National
University

* What is PANDAS?

¢ Like the built-in libraries, PANDAS
is also a python library (but is not
built-in)

* Adds support to python for data
manipulation, analysis and has
data structures for manipulating
numerical tables

)

(https ://pandas.pydata.org/do
* All sorts of other useful functions:
* read csv ()
* read_json()
* read_html
read parquet ()

|:;| pandas Getting starte:

pandas.read_csv

pandas.read_csv(filepath_or_buffer, *, sep=_NoDefault.no_default,
delimiter=None, header='infer', names=_NoDefault.no_default,
index_col=None, prefix=_NoDefault.no_default,
mangle_dupe_cols=True, dtype=None, engine=None, converters=None,

true, false, ipiniti

i ., . na_s

keep_default_na=True, na_filter=True, verbose=False,

skip_blank_lines=True, parse_dates=None, infer_datetime_forat=False,

keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True,
i i fer'

decimal=".", lineterminator=None, quotechar=""", quoting=e,

encoding_errors="strict', dialect=None, error_bad_lines=None,
warn_bad_lines=None, on_bad_Lines=None, delin_whitespace=False,
Low_memory=True, memory_map=False, float_precision=None,

storage_options=Hone)

Read a comma-separated values (csy) fileinto DataFrame.
Also supports optionally iterating or breaking of the file into chunks.
Aditional help can be found i the online docs for

Parameters: filepath_or_buffer : str, path object or file-like object

read Any valid string path is acceptable. The string could be a URL. Valid URL

* read_excel ()

https://pandas.pydata.

pandas-docs/stable/reference/api/pandas.read_csv.html

Another way: the CSV library

Australian
National
University

* Example with the csv built-in library:

import csv

csv_file = '/Users/dan/Desktop/example.csv’

with open(csv_file, 'r') as input_file:

csv_in = csv.reader (input_file)

for row in csv_in:

chr = row[0] ['chr'
['chrl

start = row[1]
end = row([2]

print ([chr, start, end])

Open CSV file with pandas.read csv ()

Australian
National
University

* Opening our file and printing what we need is much simpler:

import pandas as pd

, tend'I])

csv_file = '/Users/dan/Desktop/example.csv’

csv_data = pd.read_csv(csv_file)

print (csv_datal[[‘chr’,’start’,’end’]])

* But what is the object returned by read csv ()?

>>>

>>> type(csv_data)

<class 'pandas.core.frame.DataFrame'>

* What can we do with a pandas.core.frame.DataFrame?

PANDAS can help read binary files Pickle files

Rtonar” = R
— = Uni ity & University
Type DataDescription Reader Writer . oy » . . .
lud ‘ * Sometimes it is desirable to store the state of a variable or an object to re-
L] .
|ber u ef-‘fISl;pPOFt or many | .. e e load in a later program run
nary 1 ed ?L?;t)' oo e * Python does this with Pickle (or with Shelve)

* rea

« read parquet () — * Pickle creates a string representation of an object, which can stored in a file

« read_excel () ot s s s S or database — and later turned back into the original obiect:

* read pickle() o e e - :: imzof: pzick;T
U e >>> pickle. dumps (t)
R o - o b'\x80\x03]1q\x00 (K\x01K\x02K\x03e. "
I e s e — * pickle.dump () strings can be re-loaded with pickle.loads ():

- - & Show Source
voary ShS rendsas >>> tl = [1, 2, 3]
binary SPSS. read_spss >>> s = pickle.dumps(tl)
binary Python Pickle Format read_picke to_pickle >>> t2 = pickle.loads(s)
saL saL read_sal to_sql >>> t2
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html 1, 2, 31
Pickle example Exercises

Australian Australian
National National
University University

* Exercises in Think Python are very time consuming in this chapter (Ch
14). Focus on your homework instead.

* Writing data objects to a file and reloading later:

Reading

. Eh/;(‘l/(P);thon Ch 14 (sections: Persistence, Reading and Writing, Filenames and Paths,
ickling

OR

* Automate the boring stuff with python Ch 9 (sections: Files and File Paths, File
Reading/Writing Process

