
Lecture Roadmap

• Intro to Programming
• Variables
• Functions

• The stack
• Scope

• Flow control
• if
• while
• for

• Strings
• Lists
• Tuples
• Dictionaries

Tuples
COMP1730/COMP6730

Reading: Textbook chapter 12 : Alex Downey, Think Python, 2nd Edition (2016)
Sections: Tuples are immutable, Tuple assignment, Tuples as return values

Lists versus Tuples

• Both a sequences.
• Lists are mutable. Tuples are immutable. Otherwise, they are very

similar.
• There are good reasons for using tuples in certain circumstances:

• Performance – if a list won’t change, the python interpreter can make
optimisations

• Hands off – sometimes it is better to not be able to change (or have
something else change) the values in your sequence.

Tuples?

• Tuples are immutable. So, think of them like lists that can’t be changed.
• A comma-separated sequence of values (with or without parentheses):

• Create with a trailing comma:

• Or with the the tuple() function:

Tuples work mostly like lists

• Elements in a tuple can be accessed by indexes:

• And slices can be made from tuples:

• But they can’t be changed:

Why, tuples?

• They make excellent return values from a function

• And are good protection from unintended side-effects of functions on
your data structures

Exercises

• Only if you want – try a few at the end of Think Python Ch. 11

Reading

• Think Python Ch 11

Files and IO
COMP1730/COMP6730

Reading: Ch 14 : Alex Downey (2016) Think Python, 2nd Ed
(sections: Persistence, Reading and Writing, Filenames and Paths, Pickling)

 OR
Ch 9: Sweigart (2019) Automate the boring stuff with python
(sections: Files and File Paths, File Reading/Writing Process)

Persistence (Think Python, Ch14)

• When your program is executed, it has no memory of any previous
time it may have been run. And nothing in memory will survive after
the program exits.
• Persistence is the concept of retaining this information or memory

between program execution instances
• This is commonly done by storing input and output files on disk
• Also in databases (which are the subject of semester-long courses by

themselves)
• And with python, can use pickle to create dumps of program

memory that can be reread at another time

• But, importantly, reading files into your program provides access to
data

Files and writing programs

• Why would you need to read
or write to a file with your
program?
• Files are a very simple kind of

persistent storage
• Read in data – write out data

after performing some
computation

• Files may contain
configuration information

• Much of data science involves
looking at datasets contained
in files

The human genome is routinely stored like this, in
FASTA files.
Here is the beginning Chromosome 1:

Comma-separated values (CSV) files
• A very common data file type is the comma-separated-values and

tab-separated-values format.
• Think of these as spreadsheet data files, where the columns are

separated by either a comma or a tab:

chr,start,end,QS,CN,call,sample,cluster,site_name,site_count,site_freq,non_diploid_count,non_diploid_freq,num_exons
chr1,214639824,214647498,119,3,DUP,09C100236,1_1,var_1086_DUP,9,0.000326099,10,0.000362332,2
chr3,37324438,37327923,62,3,DUP,09C100236,1_1,var_1129_DUP,4,0.000144933,4,0.000144933,1
chr1,214639824,214647498,111,3,DUP,10C105228,1_1,var_1086_DUP,9,0.000326099,10,0.000362332,2
chr3,37324438,37327923,59,3,DUP,10C105228,1_1,var_1129_DUP,4,0.000144933,4,0.000144933,1
chr10,58361241,58394637,100,3,DUP,AU123A,1_18,var_32483_DUP,0,0,0,0,11
chr19,20691239,20807494,75,3,DUP,98HI0554A,1_20,var_3630_DUP,78,0.002826189,85,0.003079822,1
chr12,48939558,48941286,197,1,DEL,DEASD_0014_001,1_22,var_39923_DEL,0,0,0,0,3

An example – Variant Call Format
• More complicated example

of file storage of data.

• This is a Variant Call Format
file – for storing the genetic
variation information
identified from a personal
genome sequence

• Not-quite human readable,
but the industry standard.

• Every industry has its’ own
standards – probably mostly
text format, though some
more sophisticated

What is a file?
• A file is a collection of data on secondary storage (hard drive, USB key,

network file server)
• A program can open a file to read/write data
• The data in a file is a sequence of bytes (integer values 0 to 255):

• A program reading a file must interpret the data (as text, image, sound, etc)
• Python and the operating system (OS) provide support for interpreting the

data as text

• Text vs Binary files:
• A text file contains printable characters (including numbers, spaces, newlines,

etc)
• A binary file contains arbitrary data which may not correspond to printable

characters. May not be viewed is a simple text editor.

Anatomy of a text file

• Characters are commonly encoded as ‘ASCII text’:
!”#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^-`abcdefghijklmnopqrstuvwxyz{|}~

• Lines in a text file commonly end with a newline (\n) character
• Non-printing characters include tabs (\t), spaces (\s) and other

escape characters
chr,start,end,QS,CN,call,sample,cluster,site_name,site_count,site_freq,non_diploid_count,non_diploid_freq,num_exons
chr1,214639824,214647498,119,3,DUP,09C100236,1_1,var_1086_DUP,9,0.000326099,10,0.000362332,2
chr3,37324438,37327923,62,3,DUP,09C100236,1_1,var_1129_DUP,4,0.000144933,4,0.000144933,1
chr1,214639824,214647498,111,3,DUP,10C105228,1_1,var_1086_DUP,9,0.000326099,10,0.000362332,2
chr3,37324438,37327923,59,3,DUP,10C105228,1_1,var_1129_DUP,4,0.000144933,4,0.000144933,1
chr10,58361241,58394637,100,3,DUP,AU123A,1_18,var_32483_DUP,0,0,0,0,11
chr19,20691239,20807494,75,3,DUP,98HI0554A,1_20,var_3630_DUP,78,0.002826189,85,0.003079822,1
chr12,48939558,48941286,197,1,DEL,DEASD_0014_001,1_22,var_39923_DEL,0,0,0,0,3

Invisible newline
characters at end of
each line

Anatomy of a binary file

• Binary files can contain anything that the developer of the specific
binary file designed.
• If you open a binary file as if it were a text file, you might see this:

Sw
ei

ga
rt

 (2
01

9)
 A

ut
om

at
e

th
e

bo
rin

g
st

uf
f

 w
ith

 P
yt

ho
n,

 C
h.

 9
.

Files and directories:
• Files on secondary storage are organized into directories (aka folders)
• This is an abstraction provided by the operating system
• The directory structure is typically tree-like
• File locations can be represented in text form by a file path:
/Users/dan/Desktop/Gray_etal_SupplementaryTable_S2_cleaned.csv

Sw
ei

ga
rt

 (2
01

9)
 A

ut
om

at
e

th
e

bo
rin

g
st

uf
f

 w
ith

 P
yt

ho
n,

 C
h.

 9
.

Where are you (in the filesystem)?

• In your code, you aren’t able to point-and-click your way around.
• Find out the directory ‘path’:

• And you can list the files in the directory with:

Downey (2015) Think Python, 2nd Ed.

The file ‘path’:
• A path is a string that identifies the location of a file in the directory

structure
• Consists of the hierarchical directory names in sequence, with a separator

between each (the forward-slash /)
• You will see two kinds of paths:

• Full or absolute (from the top-level directory)
• Relative (to the current working directory)

• When running a python file (script mode), the current working directory
(cwd) is the directory that is was started/executed from
• If the python interpreter was started in interactive mode (iPython or the

console), the cwd is the directory that it was started from
• The os module has functions to get (and change) the current working

directory:

open()and close() file syntax:

• To open a file, use open(filename, mode)
• The file open modes can be:

• r : read
• w : write
• x : write, but only if the file doesn’t already exist
• a : append, by writing after the last line of the existing file

• To close a file, use close()

Writing to a file

• To write to a file, first it needs to be opened (in write mode):

• fout is an object that allows you to access this open file
• With the fout, you may then write to the file:

• Then, it is a good habit to remember to close the file*:

Downey (2015) Think Python, 2nd Ed.

Read a file (Think Python, Ch 9)

• Use the open() command again, but not in write mode:

• Use readline() method to get the next line from the file.
• Note that each line returned is a string – and has a newline at the end

• Then close() the file. You can’t read the file once it is closed

File objects
• When we open a file, python creates

a file object (or, more abstractly, a
stream object)
• The file object is our interface to the

file: all reading and writing is done
through methods of this object

• The type of file object (and what we
can do with it) depends on the access
mode specified when the file was
opened (ie. read-only, write-only,
append-only)

File Objects

• What are these objects and classes that allow
interaction with a file?
• This file object is
<class ‘_io.TextIOWrapper’>

• Reach for documentation.
https://docs.python.org/3/library/io.html

• Searched for TextIOWrapper

• The documentation says that
TextIOWrapper inherits from
TextIOBase

• TextIOBase is the class with the familiar
readline() and write() methods

File objects are iterable

• Iterable objects are those that a for loop can work with
• The file stream objects created with open(‘filename’, ’r’)

are iterable
• For example, can list the contents of a file with this:

csv_file = '/Users/dan/Desktop/example.csv'

fin = open(csv_file, 'r')

for line in fin:
 print(line, end='')

fin.close()

File position

• A file is a sequence of bytes
• though the file object is not a sequence

• The file object does keep track of where in the file it is reading from
or writing to
• The next read operation (or iteration) starts from the current position

• When a file is open for reading (mode ‘r’) the starting position is 0
(the beginning of the file)
• The file position does not correspond to the line number

File position with tell() and seek()
• You can programmatically find the present position in the file with
tell(). This will return the present position in a file (in bytes from
the file start):

• seek() can be used to change the position in the file.
• When a file has been iterated through, the way to go back to the

beginning is to use seek(0)

csv_file = '/Users/dan/Desktop/example.csv’

with open(csv_file, 'r') as fin:
 line = fin.readline()
 while line:
 print(fin.tell())
 line = fin.readline()

File Buffering

• File objects typically have an I/O buffer
• Constant access to the disc can be slow and buffering this activity makes sense
• Writing to the file object adds data to the buffer
• When buffer is full, all data in the buffer is written to the file (‘flushing’ the

buffer)

• Closing the file flushes the buffer
• If the program stops without closing (with a close()), the buffer may not

have been flushed and written to file.
• So you might end up with missing text
• Always close the file when finished an open()

with

• The with statement can simplify closing files and is recommended in
modern python - though it is not mentioned in any of our books(!)
• But is a useful shorthand that you may see in code that you read.
• with syntax:
with open(filename, mode) as file_obj_name:
 line = file_obj_name.readline()
 print(line)

• Note that the absence of the close()
• It just works

• Before trying to open a file, it is always good to check it exists
• You can go:

• This may save you from an error message – and you could gracefully
print a message that the file wasn’t found.

Checking a file exists() Caution – file over-writing
• When using write mode (‘w’):

• There will be no pop-up message if you are about to overwrite an existing file
• Inadvertent over-writing or ‘clobbering’ your file (https://en.wikipedia.org/wiki/Clobbering)

• The file will be gone

• Can we check if an existing file will be over-written? Yes
• With os.path.exists(filepath)

• And if it exists, do something else. Like alert the user.
• Use other file access modes:

• w: write
• x: write if file doesn’t already exist
• a: append to file

Trying to open a file that isn’t there

• Exceptions occur when you try to open a file that doesn’t exist:

• (Sneak preview) Handling these exceptions gracefully:

Downey (2015) Think Python, 2nd Ed.

Putting this all together with a CSV file

import os

csv_file = '/Users/dan/Desktop/example.csv'

if not os.path.exists(csv_file):

 print('File [' + csv_file + '] could not be found. ')

else:

 with open(csv_file, 'r') as input_file:

 for line in input_file:

 line_list = line.split(',')

 chr = line_list[0]

 start = line_list[1]

 end = line_list[2]

 print([chr, start, end])

Input file path: /Users/dan/Desktop/example.csv

Another way: the CSV library

• Reading a CSV formatted file is a
common task
• Could use the csv built-in library
https://docs.python.org/3/library/csv.htm
l

• The csv library has useful methods
• csv.reader()
• csv.writer()

Another way: the CSV library

• Example with the csv built-in library:

import csv

csv_file = '/Users/dan/Desktop/example.csv’

with open(csv_file, 'r') as input_file:

 csv_in = csv.reader(input_file)

 for row in csv_in:

 chr = row[0]

 start = row[1]

 end = row[2]

 print([chr, start, end])

Another way: open files with PANDAS

• What is PANDAS?
• Like the built-in libraries, PANDAS

is also a python library (but is not
built-in)

• Adds support to python for data
manipulation, analysis and has
data structures for manipulating
numerical tables
(https://pandas.pydata.org/docs/)

• All sorts of other useful functions:
• read_csv()
• read_json()
• read_html
• read_parquet()
• read_excel()

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

Open CSV file with pandas.read_csv()

• Opening our file and printing what we need is much simpler:

• But what is the object returned by read_csv()?

• What can we do with a pandas.core.frame.DataFrame?

import pandas as pd

csv_file = '/Users/dan/Desktop/example.csv’

csv_data = pd.read_csv(csv_file)

print(csv_data[[‘chr’,’start’,’end’]])

PANDAS can help read binary files

• Includes support for many
binary file format:

• read_hdf5()
• read_parquet()
• read_excel()
• read_pickle()

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

Pickle files
• Sometimes it is desirable to store the state of a variable or an object to re-

load in a later program run
• Python does this with Pickle (or with Shelve)

• Pickle creates a string representation of an object, which can stored in a file
or database – and later turned back into the original object:

• pickle.dump() strings can be re-loaded with pickle.loads():

Pickle example
• Writing data objects to a file and reloading later:

import pickle

import os

signup_names = list()

if os.path.exists('names.txt'):

 names_in = open('names.txt', 'rb')

 signup_names = pickle.load(names_in)

 names_in.close()

.

.

.

Exercises

• Exercises in Think Python are very time consuming in this chapter (Ch
14). Focus on your homework instead.

Reading

• Think Python Ch 14 (sections: Persistence, Reading and Writing, Filenames and Paths,
Pickling)

OR
• Automate the boring stuff with python Ch 9 (sections: Files and File Paths, File

Reading/Writing Process)

