
Announcements
• Friday is a public holiday and ALL LABS ON FRIDAY 29th MARCH HAVE

BEEN MOVED TO A MAKE-UP TIME
• Please remember to check your MyTimetable schedule and attend your

make-up lab.
• If you have problems with your allocated time, please use MyTimetable to

move to a different lab. Please don’t email the course address - we will just
ask you to use myTimetable

• Homework 4 is due at the end of this week
• Homework 5 is released in the first week back next term (week 7).
• The assignment will be released in week 8 and is due at the end of

week 10
• The Drop-In session this week will be held in N113 CSIT Building on

Thursday 1-2pm

Persistence (Think Python, Ch14)

• When your program is executed, it has no memory of any previous
time it may have been run. And nothing in memory will survive after
the program exits.
• Persistence is the concept of retaining this information or memory

between program execution instances
• This is commonly done by storing input and output files on disk
• Also, in databases (which are the subject of semester-long courses by

themselves)
• And with python, can use pickle to create dumps of program

memory that can be reread at another time

• But, importantly, reading files into your program provides access to
data

Pickle files
• Sometimes it is desirable to store the state of a variable or an object to re-

load in a later program run
• Python does this with Pickle (or with Shelve)

• Pickle creates a string representation of an object, which can stored in a file
or database – and later turned back into the original object:

• pickle.dump() strings can be re-loaded with pickle.loads():

Pickle example
• Writing data objects to a file and reloading later:

import pickle

import os

signup_names = list()

if os.path.exists('names.txt'):

 names_in = open('names.txt', 'rb')

 signup_names = pickle.load(names_in)

 names_in.close()

.

.

.

Modules
COMP1730/6730

Chapter 11 : Lubanovic, Introducing Python, 2nd Edition (2019)
But only section: Modules and the import statement

Modules (Introducing Python Ch 11)

• Every python file (*.py) can be imported as a module
• To get modules, use the import statement

• This includes python programs you have written yourself

• Place your module python files in the current working directory

• Why do this?
• Code reuse
• Namespace partitioning
• Avoidance of cut-and-paste code proliferation

Simple example
• Say that this is a function frequently appears in all your programs:

def count_letters(word):
 '''Counts the letters in a word and returns the tally as a dictionary
 of counts keyed by each letter present'''
 letter_counts = dict()
 for letter in word:
 try:
 letter_counts[letter] += 1
 except KeyError:
 letter_counts[letter] = 1 # initialize dict key

 return letter_counts

counts = count_letters('example')

for letter in counts:
 print('Letter: ' + letter + " Count: " + str(counts[letter]))

Program: counter.py:

import as a module

• You could always cut-and-paste this function into your programs
(please don’t)
• import this function as a module

• Output:

import counter

example_counts = counter.count_letters('example')

for letter in example_counts:
 print('Letter: ' + letter + " Count: " + str(counts[letter]))

Note: Importing a *.py file causes
it to be run on import. So, in this
example. the counting code runs
twice…

Tidier example
• Make a *.py of your function definition:

def count_letters(word):
 '''Counts the letters in a word and returns the tally as a dictionary
 of counts keyed by each letter present'’’
 letter_counts = dict()
 for letter in word:
 try:
 letter_counts[letter] += 1
 except KeyError:
 letter_counts[letter] = 1 # initialize dict key

 return letter_counts

Program: counter.py:

import modules

• import file of counter function definitions:

• Output:

import counter

example_counts = counter.count_letters('example')

for letter in example_counts:
 print('Letter: ' + letter + " Count: " + str(counts[letter]))

Much better!

from keyword

• You can use the from keyword just what you need from a module
• Execute any code in <module_name> script (may not be what you

want):
from counter import count_letters

example_counts = count_letters('example')

for letter in example_counts:
 print('Letter: ' + letter + " Count: " + str(counts[letter]))

as keyword short-hand

• You can use the as keyword for short-hand:

from counter import count_letters as cl

example_counts = cl('example')

for letter in example_counts:
 print('Letter: ' + letter + " Count: " + str(counts[letter]))

Module search path
• Files (*.py) that you import as modules need to be in your search

path
• The current directory from which your program is executed is searched first

• If python can’t find your file in your current directory or in the search
path, it will produce and error
• Have a look at what is in your search path:

• Temporarily append to your search path with:

Lubanovic (2019) Introducing Python, Ch. 11

>>> import sys
>>> sys.path.append(’d:\\modules\\’)

Good things about modules (use them!)
• Separates namespace between a program and imported functions
• Very easy, low overhead way to re-use your code

• The alternative is to cut-and-paste your functions from one program to the
next (or worse, cut-and-pasting blocks of code)
• This is how genes evolve in genomes – copy and diverge. Even evolution knows that this

is how to introduce errors!

• Encourages code development as functions
• When code is implemented as functions, then it can also be easily

tested
• We all have files of our favorite custom functions

• It is as easy as placing this in the same directory where your program

Bad things about modules (annoyances, really)

• Modules can be filled with anything
• Remember that the code in main is executed when a file is imported

• Calling a function from a module executes code, but it has no real
concept of ‘instance’
• Functions code blocks can contain internal data and use this during a function

call, but you aren’t able to easily obtain this and/or modify it

• A module doesn’t have the extra features of a Class
• And a lot of the time this doesn’t matter (much)

Exercises

• None

Reading

• Lubanovic, Introducing Python Ch 11 (section: Modules and the import statement)

Classes
COMP1730/6730

Chapter 10 : Lubanovic, Introducing Python, 2nd Edition (2019)
But only sections: What are objects?, Simple Objects, In self defense, Attribute

access, Data classes

Python is object-oriented
• You may hear repeatedly that everything in python is an object

• The handling of lot of these objects is hidden by python syntax
• What is an object?

• An object is a data structure that contains:
• a value (or multiple values – sometimes called attributes)
• code (functions – called methods in classes)

• An object is defined by a class
• Why should you care?

• In python, a lot of the time, you don’t really need to care
• Objects and the classes that define them can be a powerful way to organize code
• The code libraries that make python particularly useful are implemented as

classes
• instantiate classes as objects when you use them

• Code that is large and/or complex is best implemented with classes

Classes (Introducing Python Ch10)

• You have seen modules and importing useful code from these
• At an introductory level, classes are just an extra formalism that

makes things neater and more elegant.

• Object oriented coding is built on the class, but beyond the scope
of this course
• But – knowing what a class is, and maybe how to write some

simple ones for yourself, will make it easier to understand what
external software libraries are all about.

Class vs module?
• When to use which?

• Do you just need to import a function? Use modules
• Do you need functions to operate in the context of some data? Use a class

• Instances: modules only allow a singleton. Classes can have multiple
instances, that can all hold different attributes
• A class:

• Can be instantiated with specific parameters
• Is easily instantiated as many times as necessary
• Contains methods that run on the particular instance of that class
• Supports inheritance, polymorphism and all the object oriented stuff

• Modules become annoying if you:
• Need to pass lots of data arguments to the function
• Need to call many functions on the same parameter data

class definition syntax
• class keyword and a class name followed by a code block of a single

line is the bare minimum (this does nothing, of course):

• Then you instantiate an object of this class with:

• These are distinct objects, from each instantiation. They have
separate memory addresses

Lubanovic (2019) Introducing Python, Ch. 10

A class with one attribute - initialisation

• A class is often initialized at creation (instantiation). This is done by a
special function named __init__ :

• The __init__ function is optional, but may be defined to internally
assign class attributes from parameter values (and many other
things).

Lubanovic (2019) Introducing Python, Ch. 10

Anatomy of a class definition
• Say that your research interests required you to be able to associate

quotations with their source:

• You could the use instances of this class to access this information in
your programs:

Lubanovic (2019) Introducing Python, Ch. 10

Class Attributes

Class Methods

Parameters

self

Initialisation method

self
• What is self?

• It isn’t strictly a python keyword
• This is a concept broader than python

• Some experimenting:
>>> class WhatIsSelf():
... def __init__(self, name):
... self.name = name
... self.self_id = id(self)

>>> wis = WhatIsSelf('A Name')
>>> type(wis)
<class '__main__.WhatIsSelf'>
>>> id(wis)
140614751849392
>>> wis.self_id
140614751849392

self
• When an object is referring to itself, the self variable name is

commonly used. Don’t use self as a variable name elsewhere in
your code.
• The self variable is always the first (silent) argument in all function

calls (including __init__)
• but it is automatic and implicit
• You don’t need to ever specify
• It is included in method parameters and will therefore be a local variable to

your function/method

self

self

Attributes

• Attributes are the data or values that an object of a class holds
• Can be parameters copied at initialisation
• Can be default values
• Can be derived values computed with class methods

• There is an open door to access attributes in python
• All object attribute values can be accessed using the dot notation
• Assumes programmers have discipline (or know what they are doing)

Class Attributes

Parameters

The __init__ method

• __init__ is called when a class is
instantiated
• Initialises class data and can perform

checks
• Can call class methods at initialization

Class Attributes

Parameters

Class methods
• Along with the data a class object contains, the benefit is also that

class methods can be called to do tasks with this information

Class Methods

An example class: PatientMutations
• The best reason to implement a class is to hide some complexity, to

allow your client code to be simpler and easier to read and write
• This example is a class that imports data (personal genome

information from a patient) and allows some filtering/retrieval of
mutations
• patient_mutations class metadata: patient_id
• Genetic variation data table: gene_name, coordinate, mutant,
homozygous, essential_gene, damage_score
• This data allows filtering of genetic variation data to find the disease-

causing mutation
• With lots of patients with the same disease, we commonly look for

common mutations in the same gene

Patient mutations data files:

mutations_193864.csv

mutations_239872.csv

mutations_283745.csv

mutations_658192.csv

mutations_947631.csv

Comma-separated values (CSV) file format:
gene_name, chromosome, coord, ref_nucl, var_nucl, homozygous?, essential_category,
damage_score

PatientMutations in Genomics.py

• This illustrates the features
of a class all together:
• The class definition
• A Docstring
• __init__ method
• Class attributes
• Class methods

scan_mutations.py

Classes written by other people
• This is really what libraries are (mainly) composed of. You have all

used one already:
• robot.py contains several classes
• You imported the robot module:

• Then some magic detected if the robot was plugged in (or the simulation is
used):

• Initialising the robot (without a robot) instantiated the SimRobot class from
robot.py. If you have the robot, the RPCRobot class is instantiated.

• With either of these objects, you could use class methods to:
• lift_gripper()
• move_right()
• etc

A look at a Robot
class:
• This is the RPCRobot class

that can be found in
robot.py from the labs
• Class RPCRobot
• Global attribute defaults
• __init__ method
• Methods:

• lift_up
• lift_down
• drive_right
• Etc…

Classes written by other people

Things you can ignore: underscore ‘__’ names

• There is A LOT of syntax that is very specific to python classes.
• You can write good classes with only a minimum of this

• If interested, see Lubanovic (2019) Introducing Python Ch 10: Magic
Methods
• For example:

• There are default methods for these, but you can implement your
own too

Things you can ignore:

• Object-oriented coding is beyond the scope of this course
• Introducing classes is a starting point into object-oriented coding
• Further topics that WILL NOT be in the exam:

• Magic methods
• Inheritance
• Polymorphism
• Operator overloading

• But you are encouraged to read more about them, if you are
interested!

Exercises

• Exercises 10.4, 10.5 & 10.6 , Introducing Python Ch. 10
• If you have time

Reading

• Lubanovic (2019) Introducing Python Ch 10 (but only sub-sections:
What are objects?, Simple Objects, In self defense, Attribute access,
Data classes)

