
COMP1730/COMP6730
Programming for Scientists

Introduction to NumPy arrays



Announcements

* Second half of course taught by Dr Brian Parker

* My research area is computational biology, using python, R and
C++ in scientific pipelines and analyses.

* Author of EvoFam pipeline in python:
� Parker BJ, Moltke, I., Roth A., Washietl S., Wen J., Kellis M.,

Breaker R., and Pedersen JS., “New families of human
regulatory RNA structures identified by comparative analysis of
vertebrate genomes”, Genome Research. 2011,
21(11):1929-43.
� Lindblad-Toh K, Garber M∗, Zuk O∗, Lin MF∗, Parker BJ∗, et al.

“A high-resolution map of human evolutionary constraint using
29 mammals”. Nature 2011, 478(7370):476-82.

* Homework 5 (3%) is open and due on 21/4/2024, 11:55pm



Recap of 1st half and outline for 2nd half
So far:

* Functional decomposition

* Types and expressions

* Branching, if else

* Iteration, while & for loop

* Sequences, list, tuple,
str

* Code quality

* Files, Input/Output

* Classes

What’s next?

* NumPy arrays (today)

* Data analysis & visualisation

* Dictionaries and sets

* Exception handling

* Complexity, big-O notation

* Dynamic programming

* Computational science
algorithms

Many, if not most, concepts also apply to other programming
languages, not just Python.



Numpy library overview

* The python built-in data types do not include higher dimensional
data structures such as 2-D arrays/matrices (although a list of
lists can be used as a form of 2D data structure).

* Numpy adds to python arbitrarily high dimension array data
types to allow direct expression of linear algebra operations
(matrices and vectors) as well as processing of 2D data such as
images, and higher dimensional datasets.

* This data type is a defining feature of scientific, engineering and
statistical programming languages: e.g. Matlab, R, IDL, Julia
have such array data structures built-in.



Numpy advantages

* A key advantage is that numpy arrays allow elementwise
operations, which allows sophisticated and concise vectorized
expressions that perform complex operations without requiring
explicit loops.

* Numpy arrays are also much faster and memory efficient
compared to the built-in python list, as they are homogeneous
arrays with elements stored consecutively in memory, unlike
builtin lists which allow a heterogeneous mix of element types
and which store references (pointers) to objects.



Lecture outline

* Minimal math background on vectors and arrays

* Differences among NumPy arrays and lists

* Working with 1-rank NumPy arrays
- Creating 1-rank NumPy arrays
- Indexing and slicing. Views versus copies.
- Vectorized code/Vectorization

* Working with 2-rank NumPy arrays



Minimal math background on vectors

* Vectors are typically introduced in high school math courses,
e.g., point (x , y) in the plane, point (x , y , z) in space

* In general, a vector v can be mathematically defined as a tuple
with n numbers: v = (v0, v1, . . . , vn−1)

* We can use lists to represent vectors; vi is stored at v[i]

* However, in this lecture, we introduce a new sequence data type
to represent mathematical vectors (and arrays, next slide) in the
computer, the so-called NumPy arrays



Minimal math background on arrays
* Arrays are a generalization of vectors where we can have more

than one index. Examples: Ai,j (2 indices) and Bi,j,k (3 indices)

* Example: table of numbers (called matrix by mathematicians);
one index for the row, another for the column 0 12 −1 5

−1 −1 −1 0
11 5 5 −2

 A =

 A0,0 · · · A0,3
...

. . .
...

A2,0 · · · A2,3


* The number of indices in an array is the rank or number of

dimensions of the array

* Example: vectors are rank-1 arrays (or one-dimensional arrays)

* The main reason behind using NumPy arrays instead of nested
lists to represent mathematical arrays in the computer is higher
computational efficiency



NumPy Arrays as opposed to lists (I)

NumPy arrays 6= lists

Main differences among NumPy arrays and lists:
* A NumPy array can keep ONLY elements of the same type,

typically int, float, or complex numbers, whereas a list can mix
objects of different types

* NumPy arrays have a fixed size at creation, unlike lists which can
shrink and grow dynamically. Changing the size of a NumPy array will
create a new array and delete the original

* NumPy arrays can have arbitrary dimensions (e.g., previous slide)
whereas lists are one-dimensional (although, as seen in Lectures
11/12, they can be nested to, e.g., emulate rank-2 arrays)



NumPy Arrays as opposed to lists (II)

NumPy arrays 6= lists

Main differences among NumPy arrays and lists:
* Code written using NumPy arrays might be vectorized, that is,

rewritten in terms of operations on entire arrays at once (without
Python loops), resulting in much faster code versus lists

* NumPy arrays are NOT built-in in Python, but provided by an
external library/module (called NumPy from Numerical Python)
- Standard practice is to import it as import numpy as np
- NumPy arrays are of type np.ndarray
- Documentation available here (not part of Python documentation)
- It has many different features, here we only cover the basics

https://numpy.org/
https://numpy.org/doc/stable/


Examples NumPy array creation (rank-1 arrays)
The first thing one does with a NumPy array is to create it

>> import numpy as np

>> l = [0.0, 0.5, 1.0, 1.5]
>> x = np.array(l) # Convert list into array of floats
>> x
array([0. , 0.5, 1. , 1.5])

>> n = 5 # Length of the two arrays created below

# Create rank−1 array of n floats and initialize it with zeros
>> x = np.zeros(n)
>> x
array([0., 0., 0., 0., 0.])

# Create rank−1 array with n equispaced floats over interval [0,1]
>> x = np.linspace(0.0, 1.0, n)
>> x
array([0. , 0.25, 0.5 , 0.75, 1. ])



Array indexing and slicing
* Arrays are sequence types
* Arrays indexing works in the same way as lists (Lecture 7)

>>> import numpy as np
>>> x = np.linspace(0.0, 1.0, 5)
>>> x
array([0. , 0.25, 0.5 , 0.75, 1. ])
>> x[2]+x[−1]
1.5

* Slicing (Lecture 7) can also be used with arrays
>>> x[1:4] # (from:to; half−open)
array([0.25, 0.5 , 0.75])

* As opposed to lists, legal to assign single number to array slice
>>> x[1:3] = 10.0
>>> x
array([ 0. , 10. , 10. , 0.75, 1. ])



NumPy array views versus copies (I)

* As with lists, array assignment does not copy its elements

>>> import numpy as np
>>> x=np.linspace(0.0, 1.0, 5)
>>> y=x
>>> y[−1]=1000.0
>>> x
array([0.0e+00, 2.5e−01, 5.0e−01, 7.5e−01, 1.0e+03])

* However, as opposed to lists, array slicing does not return a
copy but a “view” to original array

>>> y=x[1:4]
>>> y[−1]=1000.0
>>> x
array([0.0e+00, 2.5e−01, 5.0e−01, 1.0e+03, 1.0e+03])



NumPy array views versus copies (II)

* The np.copy function returns a copy of the array

>>> import numpy as np
>>> x=np.linspace(0.0, 1.0, 5)
>>> y=np.copy(x)

>>> y[−1]=1000.0
>>> x
array([0. , 0.25, 0.5 , 0.75, 1. ])

>>> y=np.copy(x[1:4])
>>> y[−1]=1000.0
>>> x
array([0. , 0.25, 0.5 , 0.75, 1. ])



Vectorized code

* With NumPy, it is possible to work with entire arrays at once
versus using Python loops to process one element at a time

* Code written using this feature is called vectorized code

* Example: we want to evaluate the mathematical function

f (x) = sin(x)e−x

at 106 equispaced points in the interval [0,2π], and store the
result in a NumPy 1-rank array



Option 1 - Non-vectorized code

Evaluates f (x) = sin(x)e−x at 106 equispaced points within [0,2π]

import math
import numpy as np
n = 1 000 000
x = np.linspace(0, 2∗math.pi, n)
y = np.zeros(n)
for i in range(0,len(x)):

y[i] = math.sin(x[i])∗math.exp(−x[i])

Remarks:
* Python for loop to evaluate f (x) one element at a time

* Code pretty similar to the one that one would write with lists

* We can use math.sin and math.exp from the math module as we
are evaluating them with one array element at a time



Option 2 - Vectorized code

Evaluates f (x) = sin(x)e−x at 106 equispaced points within [0,2π]

import math
import numpy as np
n = 1 000 000
x = np.linspace(0, 2∗math.pi, n)
y = np.zeros(n)
y = np.sin(x)∗np.exp(−x)

Remarks:
* No Python for loop (i.e., vectorized code)

* Much faster, as it is very efficiently handled by NumPy under the hood

* Shorter, more readable code, closer to math notation

* IMPORTANT(!): we cannot use math.sin and math.exp on entire
arrays, we must use NumPy versions np.sin and np.exp instead



Non-vectorized VS vectorized code (performance)

In [1]: import math
In [2]: import numpy as np
In [3]: n = 1 000 000
In [4]: x = np.linspace(0.0, 2.0∗math.pi, n)
In [5]: y = np.zeros(n)

In [6]: %timeit for i in range(0,len(x)): \
...: y[i] = math.sin(x[i])∗math.exp(−x[i])

147 ms ...

In [7]: %timeit y = np.sin(x)∗np.exp(−x)
11.8 ms ...

* Code run on laptop with Intel i7-1265U microprocessor

* Measurements taken with %timeit magic command in IPython

* 147 VS 11.8 millisecs. (vectorized code ≈12.5 times faster!)



Vectorized functions
* A function f(x) written for a single number x usually also works

for an array of numbers x

>> import numpy as np
>> def f(x):
... return x∗∗3 + np.sin(x)∗np.exp(−3∗x)

>> x = 1.0
>> y = f(x)
>> y
1.0418943734502046

>> x = np.linspace(0.0, 1.0, 5) # array([0., 0.25, 0.5, 0.75, 1.])
>> y = f(x)
>> y
array([0. , 0.13249036, 0.2319743 , 0.4937192 , 1.04189437])

* Exercise. Write a “scalar” version of f(x) (i.e., that works with
one element of x at a time) and compare its performance versus
vectorized function above with arrays of increasing length



Vectorized in-place arithmetics (I)

Consider these two mathematically equivalent statements:
a = a + b
a += b

In practice, much more subtle:

* a=a+b is computed in two steps as (extra array w needed):
Step 1: w=a+b
Step 2: a=w

* The variable a is reassigned to a new array w in Step 2

* However, a+=b is computed as a[i]+=b[i] for each i, and
thus no extra array is needed

* a+=b is an in-place addition: it changes each element in a
rather than letting the name a refer to a new array (result of a+b)



Vectorized in-place arithmetics (II)
* When writing functions that modify NumPy arrays passed as

arguments, use in-place arithmetics (otherwise, the changes
won’t to be visible outside the function)

>> def update array wrong(a,b):
... a=a+b

>> def update array in place(a,b):
... a+=b

>> x=np.array([1.0,2.0,3.0])
>> y=np.array([10.0,20.0,30.0])

>> update array wrong(x,y)
>> x
array([1., 2., 3.])

>> update array in place(x,y)
>> x
array([11., 22., 33.])



Rank-2 arrays recap (math)

A table of numbers (called matrix by mathematicians) such as: 0 12 −1 5
−1 −1 −1 0
11 5 5 −2


can be represented as a 2-rank array Aij with (row identifier)
i = 0,1,2 and (column identifier) j = 0,1,2,3

A =

 A0,0 · · · A0,3
...

. . .
...

A2,0 · · · A2,3





Rank-2 arrays with NumPy
Example: create and fill a rank-2 NumPy array using indexing

import numpy as np
A=np.zeros((3,4)) # Create a 2−rank array with 3 rows, 4 columns
A[0,0]=0
A[0,1]=12
A[0,2]=−1
A[0,3]=5
A[1,0]=−1
...
A[2,3]=−2

# One can also write (as for nested lists):
A[2][3]=−2  0 12 −1 5

−1 −1 −1 0
11 5 5 −2





Creating rank-2 NumPy arrays from nested lists

* One can also use a nested list to create a rank-2 NumPy array

* Each element in the nested list represents a different row in the
rank-2 array

>> import numpy as np
>> A = np.array([[0.0,12.0,−1.0,5.0],
... [−1.0,−1.0,−1.0,0.0],[11.0,5.0,5.0,−2.0]])
>> A
array([[ 0., 12., −1., 5.],

[−1., −1., −1., 0.],
[11., 5., 5., −2.]]) 0 12 −1 5

−1 −1 −1 0
11 5 5 −2





Shape of NumPy array
* The shape of a NumPy array is a tuple with the number of

elements in each dimension

* The length of this tuple is the rank of the array

* One can access the shape of a NumPy array using the shape
attribute

>> import numpy as np
>> A = np.array([[0.0,12.0,−1.0,5.0],
... [−1.0,−1.0,−1.0,0.0],[11.0,5.0,5.0,−2.0]])
>> A.shape
(3,4)
>> len(A.shape)
2 # A is a rank−2 array! 0 12 −1 5

−1 −1 −1 0
11 5 5 −2





Looping over rank-2 array entries

* One can loop over the entries of a rank-2 array using a nested
loop (e.g., outer loop over the rows, inner loop over the columns)

>> import numpy as np
>> A = np.array([[0.0,12.0,−1.0,5.0],
... [−1.0,−1.0,−1.0,0.0],[11.0,5.0,5.0,−2.0]])

>> for i in range(0,A.shape[0]):
... for j in range(0,A.shape[1]):
... print("A["+str(i)+","+str(j)+"]=",A[i,j])
A[0,0]= 0.0
A[0,1]= 12.0
A[0,2]= −1.0
A[0,3]= 5.0
A[1,0]= −1.0
...
A[2,3]= −2.0



2-rank NumPy array slicing

* One can also use slicing with rank-2 arrays

* A[i,:] is row i (same as A[i])

* A[:,j] is column j

* : can also be from:to (equivalent to from:)

>> import numpy as np
>> A = np.array([[0.0,12.0,−1.0,5.0],
... [−1.0,−1.0,−1.0,0.0],[11.0,5.0,5.0,−2.0]])

>> A[1,:] # Row 1; equivalent A[1,0:] and A[1,0:A.shape[1]]
array([−1., −1., −1., 0.])

>> A[:,3] # Column 3; equivalent A[0:,3] and A[0:A.shape[1],3]
array([5.0., 0., −2.])

* Exercise: is A[1:3,1:3] legal? what does it return?



More on vectorized code (broadcasting)
* NumPy allows one to write vectorized operations among a

single number and an array
* E.g., if A rank-2 NumPy array, and a number, one can write a*A

>> import numpy as np
>> A = np.array([[0.0,12.0,−1.0,5.0],
... [−1.0,−1.0,−1.0,0.0],[11.0,5.0,5.0,−2.0]])
>> a=2.0
>> a∗A
array([[ 0., 24., −2., 10.],

[−2., −2., −2., 0.],
[22., 10., 10., −4.]])

* The result is an array with the same shape as A where each
element is multiplied by a

* Actually this is just an example of a more general feature called
broadcasting that allows one to perform operations among
“compatible” arrays of different shapes



More on vectorized code (generalised indexing)

* If L is an array of bool of the same size as A, A[L] returns an
array with the elemnts of A where L is True (does not preserve
shape).

* If I is an array of integers, A[I] returns an array with the
elemnts of A at indices I (does not preserve shape).

* If A is a 2-d array,
- A[i,j] is element at i, j (like A[i][j]).
- A[i,:] is row i (same as A[i]).
- A[:,j] is column j.
- : can be start:end.



Take home messages

* NumPy arrays and lists are types with different features

* NumPy arrays less flexible but much faster than lists (if used
wisely)

* Vectorization is the process of turning a non-vectorized
algorithm with Python loops accessing single array elements
into a vectorized version without Python loops

* Vectorization can make scientific programs working with a large
number of numerical data much faster


