
COMP1730/COMP6730
Programming for Scientists

Data analysis and visualisation



Many scientific applications
Robot simulator:

Neural network:

Linear regression:

Bioinformatics:



Data science

How-to:

* Represent 2-dimensional
data?

* Read and write data?

* Analyse and visualise data?

* Interpret data?

Barplot:

Piechart:



Data file

* Many data file formats (e.g., excel, csv, tsv, json, binary). We’ll
use the following csv (comma-separated value) file: iris.csv.

* The Iris flower data set or Fisher’s Iris data set is a multivariate
data set used and made famous by the British statistician and
biologist Ronald Fisher in 1936.

* It is representative of a typical experimental dataset, with
individual sampling units (flowers) along the rows, with several
measured variables along the columns.

* The data set consists of 50 samples from each of three species
of Iris (Iris setosa, Iris virginica and Iris versicolor). Four features
were measured from each sample: the length and the width of
the sepals and petals, in centimeters.



Representing 2D tables

* Lists are 1-dimensional, but a list can contain values of any
type, including lists and so, as we have seen, a 2D table could
be stored as a list of lists.

* In this lecture we will describe the pandas module, which is
designed for such data science applications.

* The pandas module builds on numpy arrays to implement the
2D DataFrame data structure (which is based on the R syntax).

* For further details see:

* https://pandas.pydata.org/docs/user_guide/
10min.html#min or https:
//pandas.pydata.org/Pandas_Cheat_Sheet.pdf

* To get started with pandas, you will need to get comfortable with
its two data structures: Series and DataFrame.

https://pandas.pydata.org/docs/user_guide/10min.html#min
https://pandas.pydata.org/docs/user_guide/10min.html#min
https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf


Series
* A Series is a one-dimensional vector capable of holding any

data type (integers, strings, floating point numbers, Python
objects, etc.) and an associated array of data labels, called its
index. If no index is passed, numbers will be assigned as labels
automatically starting from 0.

* A Series (given this name as it often represents a time series or
other series of measured values) is built on the Numpy vector
class and can be indexed similarly. It mainly just adds the data
labels which are useful in data analysis.

from pandas import Series, DataFrame

s =Series([4,7,−5,3])
s
s.values # extract underlying Numpy vector
s = Series(range(5), index=list(’abcde’))
s
s.mean()
s+s # acts in a vectorised fashion, like the underlying Numpy vector



DataFrame

* A DataFrame represents a tabular 2 dimensional
spreadsheet-like data structure containing an ordered collection
of columns, each of which can be a different value type.

* Allowing columns to have different types, as is needed for e.g.
measured variables on an experimental sample, is the main
difference with Numpy arrays which have a single
(homogeneous) type.

* Consider the following example of analysis comparing 2 genes
in 3 different experiments:

df = DataFrame([[20,20],[21,30],[19,40]],columns = [’gene experimental’,’gene control’])
print(df)
print(df.dtypes) # In a DataFrame columns can have different types



Reading data files

* Pandas makes it easy to read in csv and other data files.

df2 = pd.read csv(’iris.csv’, header=0)
print(df2.dtypes)
print(df2.columns)
print(df2.head())



How to select a row and column of the table?

df[0:1] # select first row
df["Species"] # select Species column (returns a Series)
df.iloc[0:2, 0:1] # slicing like list, using indexing by position
df.loc[2,"Sepal.Length"] # indexing by row and column name



Select rows satisfying some conditions?

* Example: get rows where Sepal.Width > 3.0

* To do this, we can index the DataFrame with a boolean array.

df[df["Sepal.Width"] > 3.0]

* Example: Select only rows of iris data where Species is
recorded

df2[df2["Species"].notna()]



Descriptive statistics

* min

* max

* mean

* variance.

df["Sepal.Length"].mean()
df["Sepal.Length"].var() # variance
df["Sepal.Length"].max()
df["Sepal.Length"].median()



Visualisation

* The purpose of visualisation is to see or show information –
pretty pictures are only of secondary importance!

* Different kinds of plots show different things:
- barplot
- pie-chart
- histogram or cumulative distribution
- scatterplot
- line and area plot

* Use one that best makes the point.

* Choose your dimensions carefully.

* Label axes, lines, etc.



Matplotlib

* Matplotlib is a Python 2D plotting library, which produces
publication quality figures.

* “Matplotlib makes easy things easy and hard things possible”.

* Documentation: matplotlib.org

matplotlib.org


Programming problem:

* Show scatter plot of relationship between petal and sepal length.

* Select only setosa and versicolor species.

* Show different species in different colours.

* How to visualise this result?





Take home message

* Python with pandas, numpy and Matplotlib is powerful in data
analysis.

* Think carefully about visualisation: How can people quickly
interpret the results?

* We have only scratched the surface of Matplotlib.

* For more examples of using Matplotlib with pandas:
https://pandas.pydata.org/docs/getting_started/
intro_tutorials/04_plotting.html

* Extensive documentation: https://matplotlib.org or just
google it

https://pandas.pydata.org/docs/getting_started/intro_tutorials/04_plotting.html
https://pandas.pydata.org/docs/getting_started/intro_tutorials/04_plotting.html
https://matplotlib.org

