Australian
National

University

COMP1730/COMP6730
Programming for Scientists

Dictionaries and sets

Lecture outline

* Dictionaries: the Python dict type
* Sets: the Python set type

_trali:l-m

Dictionaries (the concept of mapping)

* A dictionary is conceptually a mapping

* In general, a mapping can be defined as a relation between
inputs and outputs that associates a unique (i.e., one and only
one) output to each input

* (Many) examples of mappings:

- A continuous mathematical function y = f(x)

(mapping among x and y values)

- Alook-up index (e.g., mapping between words and page
numbers in a book index, between names and phone numbers
in a contact list, etc.)

- Even a Python list can be interpreted as a mapping between
consecutive integers (list indices) and list elements

Dictionaries (definition)

*

*

*

A dictionary is a mapping where the correspondence among
inputs and outputs is explicitly stored (in an efficient way)
Inputs are called keys and outputs are called values

Each key is associated to one and only one value (recall that
dictionaries are mappings!)

If a given key is associated to a value, we refer to these two as a
key—value pair, and say that dictionaries store key-value pairs
Keys can be values of any immutable type (e.g., integers,
strings, tuples, etc.), while values can be of any type (i.e.,
mutable or immutable)

Dictionaries are also known as associative arrays, hash tables,
symbol tables or simply maps in other programming languages

_trali:l-m

Common operations with dictionaries

*» What can you do with a dictionaries?

- Create new, empty dictionary
Store a value with a key
Is a given key stored in the dictionary?
Look up the value stored for a given key
Remove key
Enumerate keys, values, or key—value pairs

* A (common) misconception is to think that dictionaries are
implemented using, e.g., two lists of the same length (one for
the keys and another one for the values), or a single list of tuples

* This is NOT the case: a hallmark of dictionaries is that key

look-up takes (amortised) constant time (as, e.g., index look-up
in lists)

Australian
National

: University

Python’s dict type

Two example ways of creating dictionaries:
1. Using dictionary literals:

adict = {}

adict = dict()

adict = { (12,2015) : 33.4, (6,2016) : 148.3 }
adict = {"Australia":"Canberra", "Spain":"Madrid" }

- Dictionary (and set!) literals use curly brackets (i.e., { and })
— The literal can contain key : value pairs, which become the
initial contents
2. Using a dictionary comprehension (example):

fin = open("data.tsv", "r")
adict = {line.split("\t")[0]:line.split("\t")[1] for line in fin}
fin.close()

Question: Can you tell what this latter code is doing?

Dictionary look-up read operations

* |s a given key key stored in the dictionary adict? (True/False)

>>> key 1in adict
Dictionary look-up read (get value associated to given key):

>>> word_counter = { "be" : 2, "can" : 1}
>>> word_counter["can"]
1

Same syntax as sequence indexing (but with any key type!)

Looking-up for nonexisting key produces a KeyError runtime
error

>>> word_counter["the"]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: ’'the’

* Wecanuse if key in adict: as aguard against the error

stralian
National

University

Dictionary look-up write operations

* Dictionary look-up write comes in two flavours
- Add a new key-value pair
- Update value associated to an existing key

>>> word_counter["the"] =5
>>> word_counter

{'be’: 2, 'can’': 1, 'the’: 5}
>>> word_counter["can"] += 1
>>> word_counter

{'be’: 2, 'can’': 2, 'the’: 5}

Adds a new key—-value pair

Updates value of existing key

» IMPORTANT: As opposed to lists, no need to use, e.g.,

list.append(element), to add new element. Indexing +
assignment does the job (see example)

stralian

More on dictionaries

* dict is a mutable type (as, e.g., lists, and NumPy arrays); see
example in previous slide

* Keys MUST BE immutable (*)

>>> alist = [1,0]

>>> adict = { alist : 2 }

TypeError: unhashable type: ’"list’
* A dictionary can contain keys of different (immutable) types
* Stored values can be of any type (mutable or immutable)

Australian
National

University

More mutating dictionary operations

* Removing keys:
— del adictlkey]
Removes key from adict
— adict.pop (key)
Removes key from adict and returns the associated value
— adict.popitem()
Removes an arbitrary (key, value) pair and returns it
* del and pop cause a runtime error if key is not in dictionary;
popiten if it is empty

Australian
National

University

Iteration over dictionaries

* adict.keys (), adict.values (), and adict.items ()
return views of the keys, values and key—value pairs
*= Views are iterable, but not sequences

for item in adict.items():
the_key = item[0]
the_value = item[1]
print(the_key, ':’, the_value)

Programming examples

See code example file.

* Counting frequency of items (i.e., to build a histogram):

- Frequency of bases in a DNA sequence; Words in a file (or
web page)

stralian
National

University

Sets

* A setis an unordered collection of (immutable) values without
duplicates

* Similar to dictionary but only keys (no values)

*» What can you do with a set?
- Create a new set (empty or from an iterable)
Add or remove values
Is a given element in the set? (membership)
Mathematical operators: union, intersection, difference (note:
not complement!)
Enumerate values

Australian
National

University

Python’s set type

* Set literals are written with { .. }, but with elements only, not
key—value pairs:

>>> aset = {1, 'c’, (2.5, 'b") }
x { } creates an empty dictionary, not a set!
* A set can be created from any iterable:

>>> aset = set ("AGATGATT")

>>> aset

{r7", 'a", 'G¢'}

- No duplicate elements in the set

- No order of elements in the set

Australian
National

University

Set operators

elem in aset membership (e € A)
aset.issubset (bset) subset(AC B)
aset | bset union (AU B)
aset & bset intersection (AN B)
aset - bset difference (A\ B, A— B)
aset " bset symmetric difference

* Set operators return a new result set, and do not modify the

operands.

* Also exist as methods (aset .union (bset),
aset.intersection (bset), efc).

Australian
National

University

* The union of a_set and b_set is a_set b_set
the set of all elements that are in
a_set, in b_set, or in both.

* The intersection of a_set and a_set b_set
b_set is the set of elements that
are in both a_set and b_set.

(Images from Punch & Enbody)

Australian
National

University

* The difference of a_set and a_set b_set
b_set is the set of elements in
a_set that are notin b_set.

* The symmetric difference of a_set b_set
a_set and b_set is the set of
elements that are in either but
not in both.

(Images from Punch & Enbody)

Australian

National
University

* a_set is a subset of b_set iff
every element in a_set is also in
b_set. def

* ACBIiff AnB=A.

(Image from Punch & Enbody)

stralian
National

University

Copying

* Dictionaries and sets are mutable objects
* Like lists, dictionaries and sets store references to values

* dict.copy () and set.copy () create a shallow copy of the
dictionary or set
- New dictionary / set, but containing references to the same
values
- Dictionary keys and set elements are immutable, so shared
references do not matter
- Values stored in a dictionary can be mutable

Australizl-m
al

Global frame dict
adict = {1:[01,2:[11} adict
bdict = adict bdict !
cdict = adict.copy() cdict
bdict[1l] = [2])
cdict[1l] = [0, O]
adict[2] .append (1)

Australizl-m
al

Global frame dict
adict = {1:[01,2:[11} adict =
bdict = adict bdict A ! \i
cdict = adict.copy () cdiict :
pdict [1] = [2] .

1
cdict[1l] = [0, O]
adict[2] .append (1)

dict

stralian

Take-home messages

* Dictionaries store mappings among keys (inputs) and values
(outputs)

* As opposed to sequences, allows for arbitrary/generalized
indices

*» Implemented internally such that very fast lookup

* Key-value pairs have no ordering (code that assumes an
ordering is wrong!)

* Set is different from dictionaries by having only keys (no values).

