
COMP1730/COMP6730
Programming for Scientists

Dictionaries and sets



Lecture outline

* Dictionaries: the Python dict type

* Sets: the Python set type



Dictionaries (the concept of mapping)

* A dictionary is conceptually a mapping

* In general, a mapping can be defined as a relation between
inputs and outputs that associates a unique (i.e., one and only
one) output to each input

* (Many) examples of mappings:
- A continuous mathematical function y = f (x)

(mapping among x and y values)
- A look-up index (e.g., mapping between words and page

numbers in a book index, between names and phone numbers
in a contact list, etc. )

- ...
- Even a Python list can be interpreted as a mapping between

consecutive integers (list indices) and list elements



Dictionaries (definition)

* A dictionary is a mapping where the correspondence among
inputs and outputs is explicitly stored (in an efficient way)

* Inputs are called keys and outputs are called values

* Each key is associated to one and only one value (recall that
dictionaries are mappings!)

* If a given key is associated to a value, we refer to these two as a
key–value pair, and say that dictionaries store key-value pairs

* Keys can be values of any immutable type (e.g., integers,
strings, tuples, etc.), while values can be of any type (i.e.,
mutable or immutable)

* Dictionaries are also known as associative arrays, hash tables,
symbol tables or simply maps in other programming languages



Common operations with dictionaries

* What can you do with a dictionaries?
- Create new, empty dictionary
- Store a value with a key
- Is a given key stored in the dictionary?
- Look up the value stored for a given key
- Remove key
- Enumerate keys, values, or key–value pairs

* A (common) misconception is to think that dictionaries are
implemented using, e.g., two lists of the same length (one for
the keys and another one for the values), or a single list of tuples

* This is NOT the case: a hallmark of dictionaries is that key
look-up takes (amortised) constant time (as, e.g., index look-up
in lists)



Python’s dict type
Two example ways of creating dictionaries:

1. Using dictionary literals:

adict = {}
adict = dict()
adict = { (12,2015) : 33.4, (6,2016) : 148.3 }
adict = {"Australia":"Canberra", "Spain":"Madrid" }

- Dictionary (and set!) literals use curly brackets (i.e., { and })
- The literal can contain key:value pairs, which become the

initial contents
2. Using a dictionary comprehension (example):

fin = open("data.tsv", "r")
adict = {line.split("\t")[0]:line.split("\t")[1] for line in fin}
fin.close()

Question: Can you tell what this latter code is doing?



Dictionary look-up read operations
* Is a given key key stored in the dictionary adict? (True/False)
>>> key in adict

* Dictionary look-up read (get value associated to given key):

>>> word counter = { "be" : 2, "can" : 1 }
>>> word counter["can"]
1

Same syntax as sequence indexing (but with any key type!)
* Looking-up for nonexisting key produces a KeyError runtime

error

>>> word counter["the"]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: ’the’

* We can use if key in adict: as a guard against the error



Dictionary look-up write operations

* Dictionary look-up write comes in two flavours
- Add a new key-value pair
- Update value associated to an existing key

>>> word counter["the"] = 5 # Adds a new key−−value pair
>>> word counter
{’be’: 2, ’can’: 1, ’the’: 5}
>>> word counter["can"] += 1 # Updates value of existing key
>>> word counter
{’be’: 2, ’can’: 2, ’the’: 5}

* IMPORTANT: As opposed to lists, no need to use, e.g.,
list.append(element), to add new element. Indexing +
assignment does the job (see example)



More on dictionaries

* dict is a mutable type (as, e.g., lists, and NumPy arrays); see
example in previous slide

* Keys MUST BE immutable (?)

>>> alist = [1,0]
>>> adict = { alist : 2 }
TypeError: unhashable type: ’list’

* A dictionary can contain keys of different (immutable) types

* Stored values can be of any type (mutable or immutable)



More mutating dictionary operations

* Removing keys:
- del adict[key]

Removes key from adict
- adict.pop(key)

Removes key from adict and returns the associated value
- adict.popitem()

Removes an arbitrary (key, value) pair and returns it

* del and pop cause a runtime error if key is not in dictionary;
popitem if it is empty



Iteration over dictionaries

* adict.keys(), adict.values(), and adict.items()
return views of the keys, values and key–value pairs

* Views are iterable, but not sequences

for item in adict.items():
the key = item[0]
the value = item[1]
print(the key, ’:’, the value)



Programming examples

See code example file.

* Counting frequency of items (i.e., to build a histogram):
- Frequency of bases in a DNA sequence; Words in a file (or

web page)



Sets

* A set is an unordered collection of (immutable) values without
duplicates

* Similar to dictionary but only keys (no values)

* What can you do with a set?
- Create a new set (empty or from an iterable)
- Add or remove values
- Is a given element in the set? (membership)
- Mathematical operators: union, intersection, difference (note:

not complement!)
- Enumerate values



Python’s set type

* Set literals are written with { .. }, but with elements only, not
key–value pairs:
>>> aset = { 1, ’c’, (2.5, ’b’) }

* { } creates an empty dictionary, not a set!

* A set can be created from any iterable:
>>> aset = set("AGATGATT")
>>> aset
{’T’, ’A’, ’G’}
- No duplicate elements in the set
- No order of elements in the set



Set operators

elem in aset membership (e ∈ A)
aset.issubset(bset) subset (A ⊆ B)
aset | bset union (A ∪ B)
aset & bset intersection (A ∩ B)
aset - bset difference (A \ B, A− B)
aset ˆ bset symmetric difference

* Set operators return a new result set, and do not modify the
operands.

* Also exist as methods (aset.union(bset),
aset.intersection(bset), etc).



* The union of a set and b set is
the set of all elements that are in
a set, in b set, or in both.

* The intersection of a set and
b set is the set of elements that
are in both a set and b set.

(Images from Punch & Enbody)



* The difference of a set and
b set is the set of elements in
a set that are not in b set.

* The symmetric difference of
a set and b set is the set of
elements that are in either but
not in both.

(Images from Punch & Enbody)



* a set is a subset of b set iff
every element in a set is also in
b set.

* A ⊆ B iff A ∩ B = A.

(Image from Punch & Enbody)



Copying

* Dictionaries and sets are mutable objects

* Like lists, dictionaries and sets store references to values

* dict.copy() and set.copy() create a shallow copy of the
dictionary or set
- New dictionary / set, but containing references to the same

values
- Dictionary keys and set elements are immutable, so shared

references do not matter
- Values stored in a dictionary can be mutable



adict = {1:[0],2:[1]}
bdict = adict
cdict = adict.copy()
bdict[1] = [2]
cdict[1] = [0, 0]
adict[2].append(1)



adict = {1:[0],2:[1]}
bdict = adict
cdict = adict.copy()
bdict[1] = [2]
cdict[1] = [0, 0]
adict[2].append(1)



Take-home messages

* Dictionaries store mappings among keys (inputs) and values
(outputs)

* As opposed to sequences, allows for arbitrary/generalized
indices

* Implemented internally such that very fast lookup

* Key-value pairs have no ordering (code that assumes an
ordering is wrong!)

* Set is different from dictionaries by having only keys (no values).


