
COMP1730/COMP6730
Programming for Scientists

Exceptions and exception handling

Lecture outline

* The exception mechanism in Python

* Raising exceptions (assert and raise)

* Catching exceptions

Reminder: Kinds of errors

1. Syntax errors: it’s not Python!
2. Semantic/logic errors: code runs without error, but does the

wrong thing (for example, returns the wrong answer). Most
severe, harder to detect errors

3. Runtime errors – code is syntactically valid but some
exceptional condition occurred during program execution

Runtime error examples
* Run-time errors are exceptional events that can occur while

running a program.
- In some cases it is because you’re asking the Python

interpreter to do something impossible. E.g.:
- apply operation to values of wrong type,
- call a function that is not defined,
- division by zero, etc..

* In other cases, even correct code may encounter exceptional
behaviour at run-time that needs to be dealt with. E.g.:
- attempting to open a file that does not exist;
- or writing to a file and the hard disk fills up;
- or user input is of the wrong format;
- or a root-finding function cannot converge with the limits

passed in;
- or a matrix inversion routine fails as the input matrix is close to

singular (non-invertible)

Exceptions
* Exceptions are a built-in control mechanism in Python for

systematically handling runtime errors:
- An exception is raised when the runtime error occurs
- No further statements in the current code block are executed
- The exception moves up in the call stack until it is caught by

an exception handler
- If no handler catches the exception, it moves all the way up to

the Python interpreter, which prints an error message (and
quits, if in script mode)

* Python allows the programmer to both explicitly raise and catch
exceptions (later in this lecture)

* (Note: in other languages, such as C, such runtime errors would
be handled by returning an error code or other distinguished
value from a function to indicate an error occurred, which
remains an option in python).

Exception names
* Exceptions have names

* Some examples of exception names built-in in Python:
- TypeError, ValueError

(incorrect type or value for an operation or function)
- NameError (variable or function name not defined)
- IndexError (invalid sequence index)
- KeyError (key not in dictionary)
- ZeroDivisionError
- and (many) others: click here for full list of built-in exceptions

* Python can be extended with custom (i.e., programmer-defined)
exception names using classes

* For example, modules that you import may define new
exceptions not necessarily in the Python standard library (e.g.
LinAlgError exception in the numpy library)

https://docs.python.org/3/library/exceptions.html#concrete-exceptions

Lecture outline

* The exception mechanism in Python

* Raising exceptions (assert and raise)

* Catching exceptions

Review: Assertions: the assert statement to
detect semantic/logic errors

* assert condition, "fail message"

- Evaluates condition
- If the value of condition is not True, raises an
AssertionError along with the message

- (Message is optional)

* Assertions are a very useful mechanism to explicitly check the
programmer’s assumptions, e.g., on function arguments

* Function’s doc-string states assumptions (pre-conditions)—
assertions explicitly check them

* And we have also used assertions thoroughly in unit test
functions as a mechanism to detect semantic/logic errors (i.e.,
to check for code correctness)

Raising exceptions on runtime errors: the raise
statement

* raise ExceptionName(...)

- Raises the named exception
- Exception arguments (required and optional) depend on

exception type

* Can be used to raise any type of runtime error

* Typically used to raise programmer-defined exception types
(although not necessarily, as shown in the example below)

if root not found:
raise MyMathLibraryError(’root is not in input range’)

Reminder: Defensive programming

* It is better to “fail fast” (raise an exception or trigger an
assertion) than to return a nonsense result that will silently
affect the results of an experimental analysis.

Lecture outline

* The exception mechanism in Python

* Raising exceptions (assert and raise)

* Catching exceptions

Exception handling
try:

block # May contain several instructions
except ExceptionName:

error−handling block # May contain several instructions

* (Try to) Execute the instructions within block

* If no exception arises while executing block, skip
error-handling block and continue as normal

* If ExceptionName arises, jump to error-handling block,
then continue with instructions below try-except clause

* If any other exception different from ExceptionName arises,
handle it as if no try-except clause was present (next slide)

* NOTE: there can be more than one except: clause in the
same try-except statement (thus allowing to catch and
handle different exceptions in a different way)

* NOTE: ExceptionName can be omitted from except: (thus
allowing to catch and handle any exception the same way)

Exception handling and functions

* An exception raised in a function interrupts the execution of the
function block (i.e., remaining instructions are skipped)

* If the exception is caught by a try-except statement, then the
error handling block is executed (as seen in previous slide)

* BUT, it the exception is uncaught, then it is moved up to the
function’s caller

* The exception stops being moved up in the call chain at the first
matching except clause encountered in the call chain

* If the exception is not handled at all, it will kill the program (i.e.
fail fast)

Exception handling and functions (Example)
def g(x, y):

try:
return x / y

except TypeError:
return None

def f(x, y):
try:

return g(x, x + y)
except ZeroDivisionError:

return 0
except TypeError:

return 1

Which error handler block executes? Which value do the following
function calls return?

* f(2, -2)

* f("ab", "cd")

* f("ab", 2)

When to catch exceptions?

* Never catch an exception unless there is a sensible way to
handle it

* If a function call does not raise an exception, its return value (or
side effect in the case of functions modifying arguments) should
be correct

* Therefore, if you cannot compute a correct value, raise an
exception to the caller

Bad practice example (delayed error)

def average(seq):
try:

return sum(seq) / len(seq)
except ZeroDivisionError:

print("empty sequence!")

avg1 = average(a seq)
avg2 = average(b seq)
...

if avg1 < avg2:
...

* Exception caught but not handled properly

* What happens, e.g., if a seq is empty but b seq is not?

* Violation of fail-fast principle

Good practice example

def input number():
"""Input a number from keyboard with error checking"""
number = None
while number is None:

try:
ans = input("Enter PIN:")
number = int(ans)

except ValueError:
print("That’s not a number!")
number = None

return number

Keep asking for keyboard input until input is valid

try-except-finally

try:
block # May contain several instructions

except ExceptionName:
error−handling block # May contain several instructions

finally:
clean−up block # May contain several instructions

* After block finishes (whether it causes an exception or not),
execute clean-up block

* If an except clause is triggered, the error handler is executed
before clean-up block

* If the exception passes to the caller, clean-up block is still
executed before leaving the function

try-except-finally (Example)

def read file(fname):
fo = open(fname)
try:

for line in fo:
process line (may produce exception)

finally:
fo.close() # close file

Ensure file will be closed even if an exception occurs.

Note: read up on the with statement for a more elegant solution
to this example.

Take-home messages

* Systematically consider:
- What runtime errors can potentially occur in your code?
- Which should be caught, and how should they be handled?

* Use raise to throw an exception on a runtime error

* Never catch an exception if you do not know how to handle it

* Use exceptions to systematically treat runtime errors in Python.

