
COMP1730/COMP6730
Programming for Scientists

(Algorithm and problem)
Computational complexity

Algorithm complexity

* The time (or memory) consumed by a particular algorithm that
solves a computational problem:
- Counting “elementary operations” (not 𝜇s).
- Expressed as a function of the size of its input arguments.
- In the worst case.

* Complexity describes scaling behaviour: How much does
runtime grow if the size of the arguments grow by a certain
factor?
- Understanding algorithm complexity is especially important

when dealing with large problems.

Big-O notation

* O(f (n)) means roughly “a
function that grows at (or
below) the rate of f (n) for
large enough n”.

* Note that we do not care
about constants, only the
overall growth curve type.

* For example,
- n2 + 2n + 1 is O(n2)

(quadratic time)
- 100n is O(n) (linear time)
- 1012 is O(1) (constant

time).

Example

* Find the greatest element ≤ x in an unsorted sequence of n
elements. (For simplicity, assume some element ≤ x is in the
sequence.)

* Two approaches:
a) Search through the sequence; or
b) First sort the sequence, then find the greatest element ≤ x in

a sorted sequence.

Searching an unsorted sequence

def unsorted find(x, ulist):
"""
search unsorted list (ulist) for largest element <= x
"""
best = min(ulist)
for elem in ulist:

if elem == x:
return elem # elem found

elif elem < x:
if elem > best:

best = elem # update if larger
return best

Analysis

* Elementary operation: comparison.
- Can be arbitrarily complex.

* If we’re lucky, ulist[0] == x.

* Worst case?
- ulist = [0, 1, 2, ..., x - 1]

- Compare each element with x and current value of best

* What about min(ulist)?

* f (n) = 2n, so O(n)

Measured runtime

Searching a sorted sequence

def sorted find(x, slist):
"""
search the sorted list for the largest element <= x.
"""
if slist[−1] <= x:

return slist[−1]
lower = 0
upper = len(slist) − 1
search by interval halving
while (upper − lower) > 1:

middle = (lower + upper) // 2
if slist[middle] <= x:

lower = middle
else:

upper = middle
return slist[lower]

Analysis

* Loop invariant: slist[lower] <= x and
x < slist[upper].

* How many iterations of the loop?
- Initially, upper - lower = n − 1.
- The difference is halved in every iteration.
- Can halve it at most log2(n) times before it becomes 1.

* f (n) = log2(n) + 1, so O(log(n)).

Measured runtime

Nested loops- exam example

* The following function takes as input an integer ‘x‘. Give its
computational complexity in big-O notation in terms of ‘x‘.

def func a(x):
total = 0
for i in range(x∗2):

for j in range(x):
for k in range(x):

total = total + i ∗ j ∗ k
return total

* Answer: O(x3)

* (Note that the constant in the outer loop is ignored).

Problem complexity

* The complexity of a problem is the time (memory) that any
algorithm that solves the problem must use, in the worst case,
as a function of the size of the arguments.

* In other words, the complexity of a problem is the infimum of
the complexities among all algorithms that solve the problem

* For example, mathematicians have been able to prove that any
sorting algorithm that uses only pair-wise comparisons needs
O(n log(n)) comparisons in the worst case

* Proving these kind of results is out of the scope of this course
and requires advanced arguments in mathematical theory of
computation (so will not be tested in exam)

How fast can you sort?

* Any sorting algorithm that uses only pair-wise comparisons
needs n log(n) comparisons in the worst case.

1,2,3
1,3,2
2,1,3
3,1,2
2,3,1

3,2,1 n!

log2(n!)

* log2(n!) ≤ n log(n) for large enough n.

* So log2(n!) is O(n log(n)).

Measured runtime (list.sort)

Points of comparison

* Algorithm (a): O(n)

* Algorithm (b): n log(n) + log(n) = O(n log(n))

n = 64k n = 128k n = 512k

Unsorted find 0.013 s 0.026 s 0.108 s

Sorted find 0.000017s 0.000018s 0.00002 s

Sorting 0.07 s 0.18 s

Rate of growth

* Algorithm uses T (n) time on input of size n.

* If we double the size of the input, by what factor does the
runtime increase?

T
(2

n)
/2

T
(n
)

Caution

* Remember: Scaling behaviour becomes important when
problems become large, or when they need to be solved many
times.

* e.g. an algorithm may work for a small test sample in a scientific
pipeline, but by infeasible for a full data analysis.

Takehome message

* Time (or memory) complexity is expressed in big-O notation as
a function of the input size.

* The computational (and memory) complexity is a major
determinant in choosing a given algorithm or data structure for
an application:

* e.g. a dictionary is (average) constant time lookup compared to
linear time for an unsorted list and so may be preferred for
applications requiring many lookups.

* See, for example, time complexity of operations on Python
built-in types available at the Python wiki (wiki.python.org)

https://wiki.python.org/moin/TimeComplexity

