
COMP1730/COMP6730
Programming for Scientists

Dynamic programming



Outline

* Dynamic programming toy example: counting subsets

* Real-world example: (DNA) sequence alignment



Example: Counting subsets of size k
* Compute number of different subsets with k elements (i.e., of

size k ) in a set with n elements (n ≥ k ≥ 0)

* Denoted as C(n, k) (example with n = 3, k = 2)

size 2 subsets in {�,4,©} (i.e., C(3,2))

size 2 subsets in {4,©}: 1

� out

size 1 subsets in {4,©}

sz 1 in {©}: 1

4 out

sz 0 in {©}: 1

4 in

� in



Recursive formulation
* Simple recursive formulation:

C(n, k) = C(n − 1, k) + C(n − 1, k − 1)
C(n,0) = 1
C(n,n) = 1

* Simple recursive implementation:

def C(n, k):
if k == n or k == 0:

return 1 # base cases
else:

return C(n−1, k) + C(n−1, k−1)

* This brute-force solution is O(2n). How to implement this
efficiently?



Call tree for C(5,3)

C(5,3)

C(4,3)

C(3,3) C(3,2)

C(2,2) C(2,1)

C(1,1) C(1,0)

C(4,2)

C(3,2)

C(2,2) C(2,1)

C(1,1) C(1,0)

C(3,1)

C(2,1)

C(1,1) C(1,0)

C(2,0)

Note repeated work



Dynamic programming (basic idea)

* The idea of dynamic programming is to store answers to
(recursively defined) subproblems, to avoid computing them
repeatedly

* Trade memory for computation time: at the price of extra
memory we (significantly) reduce number of operations

* By computing subproblem solutions “from the bottom up”, we
can also transform a recursive algorithm into an iterative one:
- solve the base cases first;
- then, repeatedly, solve problems whose subproblems are

already solved;
- repeat until the whole problem is solved

* Need a way to index stored solutions to subproblems



2D array with subproblem solutions

C(5,0)C(4,0)C(3,0)C(2,0)C(1,0)C(0,0)

C(5,1)C(4,1)C(3,1)C(2,1)C(1,1)

C(5,2)C(4,2)C(3,2)C(2,2)

C(5,3)C(4,3)C(3,3)

n + 1

k + 1



With base cases solved

C(5,0)
= 1

C(4,0)
= 1

C(3,0)
= 1

C(2,0)
= 1

C(1,0)
= 1

C(0,0)
= 1

C(5,1)C(4,1)C(3,1)C(2,1)C(1,1)
= 1

C(5,2)C(4,2)C(3,2)C(2,2)
= 1

C(5,3)C(4,3)C(3,3)
= 1

n + 1

k + 1



Complete remaining subproblems

C(5,0)
= 1

C(4,0)
= 1

C(3,0)
= 1

C(2,0)
= 1

C(1,0)
= 1

C(0,0)
= 1

C(5,1)
= 5

C(4,1)
= 4

C(3,1)
= 3

C(2,1)
= 2

C(1,1)
= 1

C(5,2)
= 10

C(4,2)
= 6

C(3,2)
= 3

C(2,2)
= 1

C(5,3)
= 10

C(4,3)
= 4

C(3,3)
= 1

n + 1

k + 1



Computational complexity analysis

* The dynamic programming solution has time complexity
O(n × k )

* Note that the table has n× k entries and we need to scan half of
it to complete it.

* (Note: this table was first published by Plaise Pascal in 1665).



Outline

* Dynamic programming toy example: counting subsets

* Real-world example: (DNA) sequence alignment



BRCA 1 gene

CTTAGCGGTAGCCCCTTGGTTTCCGTGGCAACGGAAAAGCGCGGGAATTACAGATAAATTAAAACTGCGACTGCGCGGCGTGAGCTCGC
TGAGACTTCCTGGACGGGGGACAGGCTGTGGGGTTTCTCAGATAACTGGGCCCCTGCGCTCAGGAGGCCTTCACCCTCTGCTCTGGTTC
ATTGGAACAGAAAGAAATGGATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAATGTCATTAATGCTATGCAGAAAATCTTAGAGTGTC
CCATCTGTCTGGAGTTGATCAAGGAACCTGTCTCCACAAAGTGTGACCACATATTTTGCAAATTTTGCATGCTGAAACTTCTCAACCAG
AAGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTGA
AGAGCTATTGAAAATCATTTGTGCTTTTCAGCTTGACACAGGTTTGGAGTATGCAAACAGCTATAATTTTGCAAAAAAGGAAAATAACT
CTCCTGAACATCTAAAAGATGAAGTTTCTATCATCCAAAGTATGGGCTACAGAAACCGTGCCAAAAGACTTCTACAGAGTGAACCCGAA
AATCCTTCCTTGGAAACCAGTCTCAGTGTCCAACTCTCTAACCTTGGAACTGTGAGAACTCTGAGGACAAAGCAGCGGATACAACCTCA
AAAGACGTCTGTCTACATTGAATTGGGATCTGATTCTTCTGAAGATACCGTTAATAAGGCAACTTATTGCAGTGTGGGAGATCAAGAAT
TGTTACAAATCACCCCTCAAGGAACCAGGGATGAAATCAGTTTGGATTCTGCAAAAAAGGCTGCTTGTGAATTTTCTGAGACGGATGTA
ACAAATACTGAACATCATCAACCCAGTAATAATGATTTGAACACCACTGAGAAGCGTGCAGCTGAGAGGCATCCAGAAAAGTATCAGGG
TGAAGCAGCATCTGGGTGTGAGAGTGAAACAAGCGTCTCTGAAGACTGCTCAGGGCTATCCTCTCAGAGTGACATTTTAACCACTCAGC
AGAGGGATACCATGCAACATAACCTGATAAAGCTCCAGCAGGAAATGGCTGAACTAGAAGCTGTGTTAGAACAGCATGGGAGCCAGCCT
TCTAACAGCTACCCTTCCATCATAAGTGACTCTTCTGCCCTTGAGGACCTGCGAAATCCAGAACAAAGCACATCAGAAAAAGCAGTATT
AACTTCACAGAAAAGTAGTGAATACCCTATAAGCCAGAATCCAGAAGGCCTTTCTGCTGACAAGTTTGAGGTGTCTGCAGATAGTTCTA
CCAGTAAAAATAAAGAACCAGGAGTGGAAAGGTCATCCCCTTCTAAATGCCCATCATTAGATGATAGGTGGTACATGCACAGTTGCTCT
GGGAGTCTTCAGAATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTTGTTGATGTGGAGGAGCAACAGCTGGAAGAGTCTGGGCC
ACACGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATCTAGAGGGAACCCCTTACCTGGAATCTGGAATCAGCCTCTTCTCTGATG
ACCCTGAATCTGATCCTTCTGAAGACAGAGCCCCAGAGTCAGCTCGTGTTGGCAACATACCATCTTCAACCTCTGCATTGAAAGTTCCC
CAATTGAAAGTTGCAGAATCTGCCCAGAGTCCAGCTGCTGCTCATACTACTGATACTGCTGGGTATAATGCAATGGAAGAAAGTGTGAG
CAGGGAGAAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACAAAAGAATGTCCATGGTGGTGTCTGGCCTGACCCCAGAAGAATTTA
TGCTCGTGTACAAGTTTGCCAGAAAACACCACATCACTTTAACTAATCTAATTACTGAAGAGACTACTCATGTTGTTATGAAAACAGAT
GCTGAGTTTGTGTGTGAACGGACACTGAAATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAGTTAGCTATTTCTGGGTGACCCAGTC
TATTAAAGAAAGAAAAATGCTGAATGAG



Biological sequence data

* DNA and RNA

* Protein amino acid sequence

* Arrangement of genes in
chromosome / genome

* Human DNA is ∼3 billion (i.e., 3x109) base pairs

* BRCA 1 & 2 genes are ∼80kb (incl. exons)

* Harmful mutations change as few as 2 bases

* DNA sequencer reads are 100–2k bases



* Alignment

* Assembly

* Mapping



Edit distance

* Minimum (weighted) number of “edit operations” needed to
transform one sequence (source) into the other (target)

* Levenshtein (string edit) distance. Edit operations:
- Insert a character (gap in source string)
- Delete a character (gap in target string)
- Substitute a character

* Minimum edit distance equals to the “score” of best sequence
alignment



Levenshtein edit distance (example)

* distance(GAATTCA, GGATCGA) = 3

* Edits:

G A A T T C A
(subst. 1 G) ⇒ G G A T T C A

(del 4) ⇒ G G A T C A
(ins 5 G) ⇒ G G A T C G A

* Alignment (score= 3):

G A A T T C A
G G A T C G A

+1 +1 +1



Recursive formulation (definition)

dist(s,’’) = len(s) ∗ wgap

dist(’’, t) = len(t) ∗ wgap

dist(s + x , t + y) =

min


dist(s, t) +

{
0 ifx = y
wsub otherwise

dist(s + x , t) + wgap
dist(s, t + y) + wgap



Recursive formulation (implementation)

def edit distance(s, t, w gap = 1, w sub = 1):
"""
Returns the edit distance between 2 sequences
s and t with gap cost w gap and substitution
cost w sub
"""
if len(s) == 0:

return len(t) ∗ w gap
elif len(t) == 0:

return len(s) ∗ w gap
else:

if s[−1] == t[−1]:
d1 = edit distance(s[:−1], t[:−1])

else:
d1 = edit distance(s[:−1], t[:−1]) + w sub

d2 = edit distance(s, t[:−1]) + w gap
d3 = edit distance(s[:−1], t) + w gap
return min(d1, d2, d3)



Dynamic programming formulation (sketch)

* How to index stored solutions to subproblems?
- 2D array of shape (len(s)+1, len(t)+1)
- (i , j): edit distance(s[:i], t[:j])

* Base cases?
- One of the two sequences is empty (i = 0 or j = 0)

* Update: (i , j) is equal to minimum of:
- (i − 1, j − 1) (plus subst. weight if s[i-1] != t[j-1])
- (i − 1, j) plus gap weight
- (i , j − 1) plus gap weight



Dynamic programming formulation (dynamics)
G C A T A

0 1 2 3 4 5

T

G

C

T

A

1

2

3

4

5

1 2 · · ·

1 2 · · ·

2 1 2 · · ·

· · · 2 · · ·

· · · 2



Time complexity analysis of DP solution

* O(n2) as n by n table needs to be scanned once. Naive
recursive implementation is exponential time.



Take-home messages

* Dynamic programming is an algorithmic paradigm that can be
used to solve optimization problems in polynomial time for which
brute-force approaches (e.g., recursion) may result in
exponential time complexity

* It comes at a price: increased memory consumption

* Applicable to many different problems, but not always

* The optimization problem has to have (or should be recasted to
have) the property that the optimal solution can be expressed as
a combination of optimal solutions to overlapping subproblems


