

COMP1730/COMP6730 Programming for Scientists

Introduction to the course and administrative matters

Lecture outline

- * Why learn programming?
- * Course overview.
- * Info, contacts & schedule.
- * Assessment scheme.
- * Important TODOs.

Why learn programming?

- * Science rests on data... more and more data.
 - The Australian SKA Pathfinder radio telescope outputs 2.5GB/s (the SKA is expected to be around 100 times more).
 - A human genome (around 3 billion base pairs) can be sequenced in 3 days.

* Processing this data needs software.

- * Technical systems increasingly run on software.
 - A modern car has over 30 computers, running >10,000 lines of code.

- Simulation and optimisation are needed for large-scale design questions.
 - Intermittent renewables account for around 7.5% of energy generation. How do we design the power grid to work with 50%?

- As scientist or engineer, you will need to understand how software works, and how to modify or extend it:
 - understand algorithms and implementation to interpret and explain their results;
 - debug programs (find and correct errors);
 - modify existing programs to solve your (unique) problem.
- By the end of the course, we hope you'll tackle a novel problem by thinking, "Hey, I can just write a program to solve that..."

Programming example

- you want to calculate the monthly cost of a \$300,000 home loan...
 - use one of the on-line calculators?
- ...for all loan terms in 10-25 years, and an interest rate of 5.5%, 6.5% or 7.5%.
- * The formula is

$$A = P \frac{r(1+r)^n}{(1+r)^n - 1}$$

(derive it, or look it up on wikipedia). Let's write a program!


```
import math
import matplotlib.pyplot as mpl
```

```
def monthly_cost(principal, interest_rate, years):
    monthly_interest_rate = interest_rate/12
    # interest rate is given in % so need to divide by 100
    r = monthly_interest_rate/100
    n_payments = years * 12
    return principal * ((r * math.pow(1 + r, n_payments)) /
                         (math.pow(1 + r, n_payments) - 1))
years = range (10, 26)
mc = [monthly_cost(300000, 5.5, y) for y in years]
mpl.plot(vears, mc, 'q-')
mc = [monthly_cost(300000, 6.5, y) for y in years]
mpl.plot(years, mc, 'b-')
mc = [monthly_cost(300000, 7.5, y) for y in years]
mpl.plot(years, mc, 'r-')
mpl.show()
```


Why python?

- This is *not* a course on programming in python;
 it's a course on programming, that uses python.
- python is the 1st (IEEE) 4th (Tiobe) most popular language,
- * particularly for science and engineering uses.
- * Open source, available on most platforms.
- Many packages:
 - over 200 in the python standard library;
 - over 60,000 on pypi (pypi.python.org).
- * We will use python 3.

Course description & aims

- Introduction to programming (using python).
 - No prior programming or computer science knowledge is required.
 - This does not mean it is easy!
- ⋆ Two aims:
 - Programming as a practical skill.
 - Understand some basic CS concepts; build foundation for later courses.

Learning outcomes

(revised from ANU Programs & Courses)

Students who succeed in all aspects of this course will:

- be able to design, write and debug readable and correct small programs to solve practical data processing problems;
- * be able to read and understand small computer programs;
- understand some practical limitations on computer programs, including scaling (wrt time and memory) and numeric precision (rounding errors) issues.

About you: students in the course

Alternative courses

- * COMP1040 ("The Craft of Computing")
 - Covers as much python, but at a much quicker pace.
 - Focus on tool use and libraries for data processing, analysis and visualisation.
 - You <u>cannot</u> take both 1040 and 1730!
- * COMP7230
 - Masters-only, data science-focused intro to programming using python
 - Delivered in online/intensive mode.

Course info & contacts

- * cs.anu.edu.au/courses/comp1730/
- Wattle for forums, quizzes, surveys, assignment submission.
- ★ To ask a question:
 - Use the discussion forum on wattle.
 - For *personal* questions, use the course email: comp1730@anu.edu.au.
 - Tutors' contact info will be on wattle.
 - No office contact hours (ANU has not provided me with an office).

Discussion forum – 3 simple rules

Read before you post. Before posting a question, check if your question has already been answered.

- 2. Give your post a good, descriptive topic. Don't write "A question". Write something like "Variable assignment: why does the value not change?".
- **3.** You **may not post** solutions to assignment problems (or problem description).

Schedule overview

- * 2-3 lectures / week.
- 1 2-hour lab / week (from week 2).
- See "content & schedule" on course web site.
- Except as detailed in the assessment scheme, attendance is never mandatory.
- * Complaints about the schedule? dvc.academic@anu.edu.au

Assessment scheme

- 5 small homework assignments (20%)
- 1 larger project assignment (20%)
- Final programming exam (15%)
- Mid-sem. written exam (20%)
- Final written exam (25%)

S. Week	
3	Homework 1 due (Monday)
	In lab: Questions on Hw 1
4	Homework 2 due (Monday)
	In lab: Questions on Hw 2
5	Homework 3 due (Monday)
	In lab: Questions on Hw 3
6	Homework 4 due (Monday)
	In lab: Questions on Hw 4
	Break
7	Homework 5 due (Monday)
	In lab: Questions on Hw 5
	Mid-sem. written exam (TBC)
8	Project release
11	Project due
Exam	Final written exam
period	Programming exam

- * The complete assessment scheme is on the course web site at cs.anu.edu.au/ courses/comp1730/assessment.
- The assessment scheme will be final at the end of week 2. Any changes will be announced through the course web page and news forum.
- All assignment deadlines are hard no late submissions will be accepted.
- See www.anu.edu.au/students/ program-administration/assessments-exams/ special-assessment-consideration regarding special consideration.

Important TODOs

- * Complete the **demographic information questionarie**.
- * Sign up to a lab group.
 - If there is no place free in any lab at any time that you can attend:
 - > don't sign up to a group you cannot attend;
 - > email comp1730@anu.edu.au with your ANU ID, a complete list of all groups that you can attend, and any preference.
 - Labs only start in semester week 2.
 - In-lab assessment starts in semester week 3.

- To activate your account on the CSIT computers, you must log into STREAMS:
 - 1. https://cs.anu.edu.au/streams/;
 - 2. log in with your ANU user id and password;
 - 3. log out again.
 - Do this at least 24 hours before your first lab.

Student course representatives

- * Course representatives:
 - point of contact for fellow students who have issues/comments that they are not comfortable to raise with convenor directly;
 - participate in the SRC meetings a few times per semester.
 - Reps are encouraged to provide collective feedback directly to the convenor/lecturer.
- Interested? Send your name and ANU id to studentadmin.cecs@anu.edu.au (don't forget to mention which course!)