
COMP1730/COMP6730
Programming for Scientists

Exceptions and exception
handling

Lecture outline

* Errors
* The exception mechanism in python
* Causing exceptions (assert and raise)
* Handling exceptions

Types of errors
* Syntax errors: evident as soon as you try to run

the code.
* Runtime errors: arise when the code runs (and

maybe only under certain conditions).
- Applying a function or operator to the wrong

value, or wrong type of value;
- Indexing past the beginning/end of a list;
- and many more.

* Semantic errors: code runs without error, but
does the wrong thing (for example, returns the
wrong answer).

Exceptions
* Exceptions are a control mechanism for

handling runtime errors:
- An exception is raised when the error occurs.
- The exception moves up the call chain until it

is caught by a handler.
- If no handler catches the exception, it moves

all the way up to the python interpreter, which
prints an error message (and quits, if in script
mode).

* python allows the programmer to both raise and
catch exceptions.

Exception names

* Exceptions have names:
- TypeError, ValueError (incorrect type or

value for operation)
- NameError, UnboundLocalError,
AttributeError (variable or function name
not defined)

- IndexError (invalid sequence index)
- KeyError (key not in dictionary)
- ZeroDivisionError

* https://docs.python.org/3/library/
exceptions.html#concrete-exceptions
for full list of exceptions in python standard
library.

* Modules can define new exceptions.

https://docs.python.org/3/library/exceptions.html#concrete-exceptions
https://docs.python.org/3/library/exceptions.html#concrete-exceptions

Raising exceptions

Assertions
* assert condition, "fail message"

- Evaluate condition (to type bool)
- If the value is not True, raise an
AssertionError with the (optonal)
message.

- Else, continue with next statement.

* Assertions are used to check the programmer’s
assumptions (including correct use of functions).

* Function’s docstring states assumptions;
assertions can check them.

def average(seq):
’’’Returns the average of a
(non-empty) sequence of numbers’’’
assert len(seq) > 0, "average of \

empty sequence is undefined!"
return sum(seq) / len(seq)

Why assert?

* “Fail fast”: it is usually better for a function to
raise an exception as soon as a violation of
assumptions is detected.

* Provide specific error information.
- ”average of empty sequence is undefined” is

more explanatory than ZeroDivisionError

* It is always better to raise an exception than
return an incorrect (garbage) result.

* Semantic errors are the hardest to find!

The raise statement

* raise ExceptionName(...)

- Raises the named exception.
- Exception arguments (required or optional)

depend on exception type.

* Can be used to raise any type of runtime error.
* Typically used with programmer-defined

exception types.

Examples

* What assumptions can or should be checked in
our implementations of
- the recursive/iterative interval-halving

algorithm;
- finding the greatest element 6 x in a sorted

sequence;
- the “network” or “grid” ADTs?

* What error should be raised if they do not hold?

Catching exceptions

Exception handling
try:

suite
except ExceptionName:

error-handling suite

* Execute suite.
* If no exception arises, skip error-handling
suite and continue as normal.

* If the named exception arises from executing
suite immediately execute error-
handling suite, then continue as normal.

* If any other error occurs, fail as normal.

* Repeat asking for input until valid:

number = None
while number is None:

try:
ans = input("Enter PIN:")
number = int(ans)

except ValueError:
print("That’s not a number!")
number = None

* Test if an operation is defined:

try:
n = len(seq)

except TypeError:
n = 0 # type doesn’t have length

* A way to check if a value is “a sequence”,
“iterable”, etc. (recall these are abstract
concepts, not actual python types).

* Few cases where this is useful.

* An un-caught exeception in a function causes
an immediate end to the execution of the
function suite; the exception passes to the
function’s caller, arising from the function call.

* The exception stops at the first matching
except clause encountered in the call chain.

* f(2, -2), f("ab", "cd"), f("ab", 2):
which error handler executes?

def f(x, y):
try:

return g(x, x + y)
except ZeroDivisionError:

return 0
except TypeError:

return 1

def g(x, y):
try:

return x / y
except TypeError:

return None

try:
suite

except ExceptionName:
error-handling suite

finally:
clean-up suite

* After suite finishes (whether it causes an
exception or not), execute clean-up suite.

* If an except clause is triggered, the error
handler is executed before clean-up suite.

* If the exception passes to the caller, clean-up
suite is still executed before leaving the
function.

* Ensure file is closed even if an exception occurs:

def read file(fname):
fo = open(fname)
try:

for line in fo:
process line

finally:
fo.close() # close file

Summary
* Never catch an exception unless there is a

sensible way to handle it.

* If a function does not raise an exception, it’s
return value (or side effect) should be correct.
- Therefore, if you can’t compute a correct

value, raise an exception!

* Consider:
- What runtime errors may occur?
- Which should be caught, and how should they

be handled?
- What assumptions should be checked?

