

COMP1730/COMP6730 Programming for Scientists

Floating point numbers

Outline

- ***** Numbers in binary and other bases
- ***** Floating point numbers
- ***** Error analysis

Representing Integers

Sequential encoding

- ***** A *sequential encoding system* represents each item (words, numbers, etc) by a sequence of symbols; the order (position) of a symbol in the sequence carries meaning, as much as the symbol itself.
- ***** For example,
	- $-$ " representation " \neq "interpret as one"
	- $-007 \neq 700$

Positional number system

- ***** The position of a digit is the power of the *base* that it adds to the number.
- ***** For example, in base 10:
	- 1864
	- $= 1$ thousand 8 hundreds 6 tens 4 ones
	- $= 1 \times 10^3 + 8 \times 10^2 + 6 \times 10^1 + 4 \times 10^0$
- ***** The position of the least significant digit is 0. $(b^0 = 1$ for any base *b*.)
- ***** The representation of any (non-negative integer) number is unique, except for leading zeros.

We can count in any base

- ***** For example, in base 3:
	- 2120001_3
	- $= 2 \times 3^6$ $+$ 1 \times 3 5 $+$ 2 \times 3 4 $+$ 0 \times 3 3 $+$ 0 \times 3 2 + 0 \times 3 1 + 1 \times 3 0

- $= 2 \times 729 + 243 + 2 \times 81 + 1$
- $= 1864$
- ***** Each digit is one of 0, . . . , *b* − 1.
- ***** ("*nnnnb*" means a number in base *b*.)

***** Ancient Babylonians (*ca* 2,000 BC) counted in base 60.

$$
\text{A} \text{A} \text{C} \text{C} \text{D}
$$

$$
=31\times60^{1}+4\times60^{0}
$$

 $= 1864$

***** However, they did not have a symbol for 0: can mean 1, 60, 3600, ¹/60, etc.

Binary numbers

***** Binary numbers are simply numbers in base 2.

111010010002

- $= 1 \times 2^{10}$ $+$ 1 \times 2 9 + 1 \times 2 8 + 0 \times 2 7 + 1 \times 2 6 + 0 \times 2 5 $+$ $0\times 2^4 +$ $1\times 2^3 +$ $0\times 2^2 +$ $0\times 2^1 +$ 0×2^0
- $= 1024 + 512 + 256 + 64 + 8$
- $= 1864$

Bits and bytes

- ***** In the electronic computer, a single binary digit (*bit*) is represented by the presence or absence of current in a circuit element. xola
- ***** 8 bits make an *octet*, or *byte*.
- ***** Digital hardware works with *fixed-width* number representations ("*words*").
- ***** Common word sizes: 32-bit, 64-bit.

Arithmetic

***** Long (multi-digit) addition, subtraction, multiplication, division and comparison (of non-negative numbers) work the same way in any base.

$$
\begin{array}{l}0_2+0_2=0_2\\0_2+1_2=1_2\\1_2+0_2=1_2\\1_2+1_2=10_2\end{array}
$$

$$
\begin{array}{c}\n 111 \\
0101_2 \\
+0111_2\n\end{array}
$$

1100²

 $1001₂$ \times 101₂ $1001₂$ 00000₂

> 1001002 1011012

Floating point numbers

Representing fractional numbers

***** Extend the number system to negative positions; decimal point marks position zero.

$$
0.2510
$$

= 0 × 10⁰ + 2 × 10⁻¹ + 5 × 10⁻²
= 0 × 1 + 2 × 1/10 + 5 × 1/100

$$
0.012
$$

= 0 × 2⁰ + 0 × 2⁻¹ + 1 × 2⁻²
= 0 × 1 + 0 × 1/2 + 1 × 1/4
= 0.25₁₀

- ***** Not every fraction has a finite decimal expansion in a given base.
- ***** For example,
	- **-** ¹/³ = 0.3333 . . . in base 10
	- $1/5 = 0.001100110011...$ in base 2
	- $-1/3 = 0.1$ in base 3.
- ***** Because digital computers work with numbers of fixed width, representation of fractions have *finite precision*.

Floating point representation

***** A floating point number in base *b*,

 $x = \pm m \times b^e$

- consists of three components:
- **-** the sign (+ or −);
- **-** the *significand* (*m*);
- **-** the *exponent* (*e*);
- ***** The number is *normalised* iff 1 ≤ *m* < *b*.

***** Compact (small) representation of numbers far from the decimal point.

- 1.08 × 10⁹ = 1 →×9 z }| { 080000000 .0 **-** 6.44 × 10[−]⁷ = 0. ←×7 z }| { 0000006 44 **-** 1.0000001² × 2 ¹¹¹¹⁰² = 1 z }| { 0000001000000000000000000000002→×30

- ***** Floating point types, as implemented in computers, use *fixed-width* binary integer representation of the significand and exponent.
- ***** In a normalised binary number the first digit is 1, so only the fraction is represented $(m = 1.f)$.
- ***** The exponent is biased by a negative constant.
- ***** IEEE standard formats:
	- **-** single: 23-bit fraction, 8-bit exponent.
	- **-** double: 52-bit fraction, 11-bit exponent.
- ***** Standard also specifies how to represent 0, $+\infty$, $-\infty$ and nan ("not a number").

$$
x = (-1)^{s} (1.f)2 2(e-127)
$$

= (-1)⁰ (1.01)₂ 2<sup>01111100₂-127
= (1 + 1 · 2⁻²) 2⁽⁶⁴⁺³²⁺¹⁶⁺⁸⁺⁴⁾⁻¹²⁷
= (1.25)2⁻³ = (1.25)/8 = 0.15625</sup>

(Image from <wikipedia.org>)

- ***** Type float can represent infinity: >>> 1 / 1e-320
	- inf
- ***** Most math functions raise an error rather than return inf.
	- **-** For example, 1 / 0, or math.log(0).
- ***** nan ("not a number") is a special value used to indicate errors or undefined results.

>>> (1 / 1e-320) - (1 / 1e-320) nan

***** math.isinf and math.isnan functions.

Floating point number systems

- ***** A floating point number system (*b*, *p*, *L*, *U*) is defined by four parameters:
	- **-** the base (*b*);
	- **-** the *precision*: number of digits in the fraction of the significand (*p*); and
	- **-** the lower (*L*) and upper (*U*) limit of the exponent.
- ***** IEEE double-precision is (2, 52, −1023, 1024) (with some tweaks).

***** The numbers that can be represented (exactly) in a floating point number system are not evenly distributed on the real line.

***** E.g., (2, 2, −2, 1):

- ***** E.g., in a (2, 52, −1023, 1024) system,
	- **-** the smallest number > 0 is 2[−]¹⁰²³ ≈ 10[−]³⁰⁸ ,
	- **-** (Actual IEEE double standard can represent numbers down to $\approx 4 \cdot 10^{-324}$.)
	- $-$ the smallest number > 1 is 1 $+ 2^{-52}$ \approx 1 $+$ 2 \cdot 10 $^{-16}.$
- ***** Rounding the significand to $p + 1$ digits causes a discrepancy, called the rounding error.

***** Because of rounding, mathematical laws do not always hold for floating point arithmetic.

>>> a = 11111113.0 >>> b = -11111111.0 >>> c = 7.51111111 >>> (a + b) + c == a + (b + c) False >>> ((a + b) + c) - (a + (b + c)) 4.488374116817795e-10

Example from Punch & Enbody

***** *(Almost) never compare* float*s with* ==.

Error analysis

- ***** Let *x* be the true value and *x*ˆ the approximate (measured or representable) number.
	- **-** The *absolute error* is ∆*x* = |*x* − *x*ˆ|.

- The relative error is
$$
\frac{\Delta x}{x} = \frac{|x - \hat{x}|}{|x|}
$$
.

- \star Rounding to $p + 1$ digits in base b,
	- **-** the absolute error is ≤ ¹/2*b* −*p* · *b e* , and
	- **-** the relative error is ≤ ¹/2*b* −*p* .

Error propagation

***** The absolute error $|f(x) - f(\hat{x})|$ is approximately proportional to $\frac{df}{dx}(x)|x - \hat{x}|$.

- ***** IEEE standard specifies that floating point arithmetic operations (and some other math functions, e.g., $\sqrt{ }$ are exact, except for the rounding error in the result.
	- **-** This does *not* mean errors do not propagate.
- \star If *y* = *x*₁ + *x*₂, then Δ *y* = Δ *x*₁ + Δ *x*₂

 $-$ Also if either x_1 or x_2 is negative.

 \star If *y* = *x_i* × *x*₂, then $\Delta y = x_2 \times \Delta x_1 + x_1 \times \Delta x_2$ $+\Delta x_1 \times \Delta x_2$.

***** Example, continued:

- **-** *a* = 1.1111113 · 10⁷ , *b* = −1.1111111 · 10⁷ and $c = 7.51111111$.
- **-** *y* = *b* + *c* = −1.111111851111111 · 10⁷ . **-** ∆*y* ≤ 2 −53 · 10⁷ ≈ 1.1 · 10[−]⁹ (assuming double precision and no error other than rounding).
- $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = \mathbf{a} + \mathbf{v} \pm \Delta \mathbf{v}$ (plus rounding error).
- ***** When adding floating point numbers, the absolute rounding error is proportional to the magnitude of the largest number that is rounded.