

COMP1730/COMP6730 Programming for Scientists

Floating point numbers

Outline

- * Numbers in binary and other bases
- * Floating point numbers
- * Error analysis

Representing Integers

Sequential encoding

- A sequential encoding system represents each item (words, numbers, etc) by a sequence of symbols; the order (position) of a symbol in the sequence carries meaning, as much as the symbol itself.
- * For example,
 - " representation " \neq "interpret as one"
 - 007 \neq 700

Positional number system

- The position of a digit is the power of the base that it adds to the number.
- * For example, in base 10:
 - 1864
 - = 1 thousand 8 hundreds 6 tens 4 ones
 - $= 1 \times 10^3 + 8 \times 10^2 + 6 \times 10^1 + 4 \times 10^0$
- * The position of the least significant digit is 0. $(b^0 = 1 \text{ for any base } b.)$
- The representation of any (non-negative integer) number is unique, except for leading zeros.

We can count in any base

- * For example, in base 3:
 - 2120001₃
 - $= \begin{array}{c} 2 \times 3^{6} \\ + 1 \times 3^{5} + 2 \times 3^{4} + 0 \times 3^{3} \\ + 0 \times 3^{2} + 0 \times 3^{1} + 1 \times 3^{0} \end{array}$

- $= 2 \times 729 + 243 + 2 \times 81 + 1$ = 1864
- * Each digit is one of $0, \ldots, b-1$.
- * ("*nnnn*_b" means a number in base *b*.)

- Ancient Babylonians (*ca* 2,000 BC) counted in base 60.
 - **4**(17) (27)

$$= 31 \times 60^{1} + 4 \times 60^{0}$$

= 1864

7 1	{7 11	4(7 21	***7 31	47 41	** 7 51
17 2	₹77 12	477 22	*** 177 32	42 17 42	1 1 7 7 52
1117 3	₹₩7 13	₩₩ 23	***!??? 33	43 43	12 111 53
97 4	₹27 14	₩\$\$7 24	***\$7 34	44	* * * 54
₩ 5	15	₩\$\$\$ 25	₩₩ 35	45 🙀 45	*** 55
6	16	₩₩ 26	₩₩7736	��₩ 46	★★₩ 56
8 7	(7 17	**** 27	₩₩ 37	47 47	*** 5 7
₩ 8	18	₩₩ 28	₩₩ 38	₩₩ 48	★★₩ 58
₩ 9	(# 19	∜∰ 29	**# 39	♥₩ 49	��# 59
4 10	4(20	*** 30	4 0	5 0	

 ★ However, they did not have a symbol for 0: can mean 1, 60, 3600, ¹/₆₀, etc.

Binary numbers

★ Binary numbers are simply numbers in base 2.

11101001000₂

- $= \begin{array}{c} 1 \times 2^{10} \\ + 1 \times 2^9 + 1 \times 2^8 + 0 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 \\ + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 \end{array}$
- = 1024 + 512 + 256 + 64 + 8
- = 1864

Bits and bytes

- In the electronic computer, a single binary digit (*bit*) is represented by the presence or absence of current in a circuit element.
- * 8 bits make an *octet*, or *byte*.
- Digital hardware works with fixed-width number representations ("words").
- Common word sizes: 32-bit, 64-bit.

Arithmetic

 Long (multi-digit) addition, subtraction, multiplication, division and comparison (of non-negative numbers) work the same way in any base.

$$\begin{array}{c} 0_2 + 0_2 = 0_2 \\ 0_2 + 1_2 = 1_2 \\ 1_2 + 0_2 = 1_2 \\ 1_2 + 1_2 = 10_2 \end{array}$$

 $\begin{array}{r}
 1001_{2} \\
 \times 101_{2} \\
 1001_{2} \\
 00000_{2} \\
 100100_{2} \\
 101101_{2}
 \end{array}$

Floating point numbers

Representing fractional numbers

 Extend the number system to negative positions; decimal point marks position zero.

2

$$\begin{array}{l} 0.25_{10} \\ = \ 0 \times 10^{0} + 2 \times 10^{-1} + 5 \times 10^{-1} \\ = \ 0 \times 1 + 2 \times \frac{1}{10} + 5 \times \frac{1}{100} \\ 0.01_{2} \\ = \ 0 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} \\ = \ 0 \times 1 + 0 \times \frac{1}{2} + 1 \times \frac{1}{4} \\ = \ 0.25_{10} \end{array}$$

- Not every fraction has a finite decimal expansion in a given base.
- * For example,
 - $1/3=0.3333\ldots$ in base 10
 - 1/5 = 0.001100110011... in base 2
 - 1/3 = 0.1 in base 3.
- Because digital computers work with numbers of fixed width, representation of fractions have *finite precision*.

Floating point representation

* A floating point number in base b,

 $x = \pm m \times b^e$

consists of three components:

- the sign (+ or -);
- the significand (m);
- the exponent (e);
- * The number is *normalised* iff $1 \le m < b$.

 Compact (small) representation of numbers far from the decimal point.

$$- 1.08 \times 10^9 = 1 \underbrace{080000000}_{\leftarrow \times 7} .0$$

- $\ 6.44 \times 10^{-7} = 0.000006 \, 44$

- Floating point types, as implemented in computers, use *fixed-width* binary integer representation of the significand and exponent.
- * In a normalised binary number the first digit is 1, so only the fraction is represented (m = 1.f).
- * The exponent is biased by a negative constant.
- * IEEE standard formats:
 - single: 23-bit fraction, 8-bit exponent.
 - double: 52-bit fraction, 11-bit exponent.
- * Standard also specifies how to represent 0, $+\infty$, $-\infty$ and nan ("not a number").

$$\begin{aligned} x &= (-1)^s \, (1.f)_2 \, 2^{(e-127)} \\ &= (-1)^0 \, (1.01)_2 \, 2^{01111100_2 - 127} \\ &= (1+1\cdot 2^{-2}) \, 2^{(64+32+16+8+4)-127} \\ &= (1.25) 2^{-3} = (1.25)/8 = 0.15625 \end{aligned}$$

(Image from wikipedia.org)

* Type float can represent infinity:
>>> 1 / 1e-320

inf

- Most math functions raise an error rather than return inf.
 - For example, 1 / 0, or math.log(0).
- nan ("not a number") is a special value used to indicate errors or undefined results.

nan

* math.isinf and math.isnan functions.

Floating point number systems

- A floating point number system (b, p, L, U) is defined by four parameters:
 - the base (b);
 - the *precision*: number of digits in the fraction of the significand (*p*); and
 - the lower (*L*) and upper (*U*) limit of the exponent.
- ★ IEEE double-precision is (2, 52, −1023, 1024) (with some tweaks).

 The numbers that can be represented (exactly) in a floating point number system are not evenly distributed on the real line.

* E.g.,
$$(2, 2, -2, 1)$$
: $\bigcup_{0}^{1} \bigcup_{0}^{1} \bigcup_{1}^{1} \bigcup_{1}^{1}$

- * E.g., in a (2, 52, -1023, 1024) system,
 - the smallest number > 0 is $2^{-1023} \approx 10^{-308}$,
 - (Actual IEEE double standard can represent numbers down to $\approx 4\cdot 10^{-324}.)$
 - the smallest number > 1 is 1 + 2 $^{-52}$ \approx 1 + 2 \cdot 10 $^{-16}.$
- * Rounding the significand to p + 1 digits causes a discrepancy, called the rounding error.

 Because of rounding, mathematical laws do not always hold for floating point arithmetic.

Example from Punch & Enbody

* (Almost) never compare floats with ==.

Error analysis

- * Let x be the true value and \hat{x} the approximate (measured or representable) number.
 - The *absolute error* is $\Delta x = |x \hat{x}|$.

- The *relative error* is
$$\frac{\Delta x}{x} = \frac{|x - \hat{x}|}{|x|}$$

- * Rounding to p + 1 digits in base b,
 - the absolute error is $\leq 1/2b^{-p} \cdot b^{e}$, and
 - the relative error is $\leq 1/2b^{-p}$.

Error propagation

* The absolute error $|f(x) - f(\hat{x})|$ is approximately proportional to $\frac{df}{dx}(x)|x - \hat{x}|$.

- * IEEE standard specifies that floating point arithmetic operations (and some other math functions, e.g., $\sqrt{}$) are exact, except for the rounding error in the result.
 - This does *not* mean errors do not propagate.
- * If $y = x_1 + x_2$, then $\Delta y = \Delta x_1 + \Delta x_2$
 - Also if either x_1 or x_2 is negative.
- * If $y = x_i \times x_2$, then $\Delta y = x_2 \times \Delta x_1 + x_1 \times \Delta x_2 + \Delta x_1 \times \Delta x_2$.

***** Example, continued:

- $a = 1.1111113 \cdot 10^7$, $b = -1.11111111 \cdot 10^7$ and c = 7.511111111.
- $-y = b + c = -1.111111851111111 \cdot 10^7.$
- $\Delta y \le 2^{-53} \cdot 10^7 \approx 1.1 \cdot 10^{-9}$ (assuming double precision and no error other than rounding).
- $a + (b + c) = a + y \pm \Delta y$ (plus rounding error).
- When adding floating point numbers, the absolute rounding error is proportional to the magnitude of the largest number that is rounded.