
COMP1730/COMP6730
Programming for Scientists

Floating point numbers



Outline

* Numbers in binary and other bases
* Floating point numbers
* Error analysis



Representing Integers



Sequential encoding

* A sequential encoding system represents each
item (words, numbers, etc) by a sequence of
symbols; the order (position) of a symbol in the
sequence carries meaning, as much as the
symbol itself.

* For example,
- ” representation ” 6= ”interpret as one”
- 007 6= 700



Positional number system
* The position of a digit is the power of the base

that it adds to the number.

* For example, in base 10:
1864

= 1 thousand 8 hundreds 6 tens 4 ones
= 1× 103 + 8× 102 + 6× 101 + 4× 100

* The position of the least significant digit is 0.
(b0 = 1 for any base b.)

* The representation of any (non-negative integer)
number is unique, except for leading zeros.



We can count in any base
* For example, in base 3:

21200013

= 2× 36

+ 1× 35 + 2× 34 + 0× 33

+ 0× 32 + 0× 31 + 1× 30

= 2× 729 + 243 + 2× 81 + 1
= 1864

* Each digit is one of 0, . . . ,b − 1.
* (“nnnnb” means a number in base b.)



* Ancient Babylonians
(ca 2,000 BC)
counted in base 60.

= 31× 601 + 4× 600

= 1864

* However, they did not have a symbol for 0:
can mean 1, 60, 3600, 1/60, etc.



Binary numbers

* Binary numbers are simply numbers in base 2.

111010010002
= 1× 210

+ 1× 29 + 1× 28 + 0× 27 + 1× 26 + 0× 25

+ 0× 24 + 1× 23 + 0× 22 + 0× 21 + 0× 20

= 1024 + 512 + 256 + 64 + 8
= 1864



Bits and bytes
* In the electronic computer, a single binary digit

(bit) is represented by the presence or absence
of current in a circuit element.

* 8 bits make an octet, or byte.
* Digital hardware works with

fixed-width number
representations (“words”).

* Common word sizes: 32-bit,
64-bit.



Arithmetic
* Long (multi-digit) addition, subtraction,

multiplication, division and comparison (of
non-negative numbers) work the same way in
any base.

02 + 02 = 02
02 + 12 = 12
12 + 02 = 12
12 + 12 = 102

1 1 1

01012
+ 01112

11002

10012
× 1012

10012
000002

1001002
1011012



Floating point numbers



Representing fractional numbers
* Extend the number system to negative

positions; decimal point marks position zero.

0.2510
= 0× 100 + 2× 10−1 + 5× 10−2

= 0× 1 + 2× 1/10 + 5× 1/100

0.012
= 0× 20 + 0× 2−1 + 1× 2−2

= 0× 1 + 0× 1/2 + 1× 1/4

= 0.2510



* Not every fraction has a finite decimal
expansion in a given base.

* For example,
- 1/3 = 0.3333 . . . in base 10
- 1/5 = 0.001100110011 . . . in base 2
- 1/3 = 0.1 in base 3.

* Because digital computers work with numbers
of fixed width, representation of fractions have
finite precision.



Floating point representation

* A floating point number in base b,

x = ±m × be

consists of three components:
- the sign (+ or −);
- the significand (m);
- the exponent (e);

* The number is normalised iff 1 ≤ m < b.



* Compact (small) representation of numbers far
from the decimal point.

- 1.08× 109 = 1
→×9︷ ︸︸ ︷

080000000 .0

- 6.44× 10−7 = 0.
←×7︷ ︸︸ ︷

0000006 44

- 1.00000012 × 2111102 =

1
→×30︷ ︸︸ ︷

0000001000000000000000000000002



* Floating point types, as implemented in
computers, use fixed-width binary integer
representation of the significand and exponent.

* In a normalised binary number the first digit is 1,
so only the fraction is represented (m = 1.f ).

* The exponent is biased by a negative constant.
* IEEE standard formats:
- single: 23-bit fraction, 8-bit exponent.
- double: 52-bit fraction, 11-bit exponent.

* Standard also specifies how to represent 0,
+∞, −∞ and nan (“not a number”).



x = (−1)s (1.f )2 2(e−127)

= (−1)0 (1.01)2 2011111002−127

= (1 + 1 · 2−2) 2(64+32+16+8+4)−127

= (1.25)2−3 = (1.25)/8 = 0.15625

(Image from wikipedia.org)

wikipedia.org


* Type float can represent infinity:

>>> 1 / 1e-320
inf

* Most math functions raise an error rather than
return inf.
- For example, 1 / 0, or math.log(0).

* nan (“not a number”) is a special value used to
indicate errors or undefined results.

>>> (1 / 1e-320) - (1 / 1e-320)
nan

* math.isinf and math.isnan functions.



Floating point number systems

* A floating point number system (b,p,L,U) is
defined by four parameters:
- the base (b);
- the precision: number of digits in the fraction

of the significand (p); and
- the lower (L) and upper (U) limit of the

exponent.
* IEEE double-precision is (2,52,−1023,1024)

(with some tweaks).



* The numbers that can be represented (exactly)
in a floating point number system are not evenly
distributed on the real line.

* E.g., (2,2,−2,1):

* E.g., in a (2,52,−1023,1024) system,
- the smallest number > 0 is 2−1023 ≈ 10−308,
- (Actual IEEE double standard can represent

numbers down to ≈ 4 · 10−324.)
- the smallest number > 1 is 1 + 2−52

≈ 1 + 2 · 10−16.
* Rounding the significand to p + 1 digits causes

a discrepancy, called the rounding error.



* Because of rounding, mathematical laws do not
always hold for floating point arithmetic.

>>> a = 11111113.0
>>> b = -11111111.0
>>> c = 7.51111111
>>> (a + b) + c == a + (b + c)
False
>>> ((a + b) + c) - (a + (b + c))
4.488374116817795e-10

Example from Punch & Enbody

* (Almost) never compare floats with ==.



Error analysis

* Let x be the true value and x̂ the approximate
(measured or representable) number.

- The absolute error is ∆x = |x − x̂ |.

- The relative error is
∆x
x

=
|x − x̂ |
|x | .

* Rounding to p + 1 digits in base b,
- the absolute error is ≤ 1/2b−p · be, and
- the relative error is ≤ 1/2b−p.



Error propagation

* The absolute error |f (x)− f (x̂)| is approximately
proportional to df

dx (x)|x − x̂ |.



* IEEE standard specifies that floating point
arithmetic operations (and some other math
functions, e.g., √ ) are exact, except for the
rounding error in the result.
- This does not mean errors do not propagate.

* If y = x1 + x2, then ∆y = ∆x1 + ∆x2

- Also if either x1 or x2 is negative.
* If y = xi × x2, then ∆y = x2 ×∆x1 + x1 ×∆x2

+∆x1 ×∆x2.



* Example, continued:
- a = 1.1111113 · 107, b = −1.1111111 · 107

and c = 7.51111111.
- y = b + c = −1.111111851111111 · 107.
- ∆y ≤ 2−53 · 107 ≈ 1.1 · 10−9 (assuming double

precision and no error other than rounding).
- a + (b + c) = a + y ±∆y (plus rounding error).

* When adding floating point numbers, the
absolute rounding error is proportional to the
magnitude of the largest number that is
rounded.


