
COMP1730/COMP6730
Programming for Scientists

Functions (part 2)

Lecture outline

* Recap of functions.
* Namespaces & references.
* Recursion revisted.

Functions (recap)
* A function is a piece of code that can be called

by its name.
* Why use functions?
- Abstraction: To use a function, we only need

to know what it does, not how.
- Readability.
- Divide and conquer – break a complex

problem into simpler problems.
- A function is a logical unit of testing.
- Reuse: Write once, use many times (and by

many).

Function definition

def change in percent(old, new):
diff = new - old
return (diff / old) * 100

name parameters

suite
4

spaces

* The function suite is defined by indentation.
* Function parameters are variables local to the

function suite; their values are set when the
function is called.

* The def statement only defines the function
– it does not execute the function.

Function call

* To call a function, write its name followed by its
arguments in parentheses:

change in percent(364, 489)

* Order of evaluation: The argument expressions
are evaluated left-to-right, and their values are
assigned to the parameters; then the function
suite is executed.

* return expression causes the function call
to end, and return the value of the expression.

Functions without return

* A function call is an expression: its value is the
value return’d by the function.

* In python, functions always return a value: If
execution reaches the end of a function suite
without executing a return statement, the
return value is the special value None of type
NoneType.

* Note: None-values are not printed in the
interactive shell (unless explicitly with print).

Namespaces

Namespaces
* Assignment associates a (variable) name with a

reference to a value.
- This association is stored in a namespace

(sometimes also called a “frame”).

* Whenever a function is called, a new local
namespace is created.

* Assignments to variables (including parameters)
during execution of the function are done in the
local namespace.

* The local namespace disappars when the
function call ends.

Scope

* The scope of a variable is “the set of program
statements over which a variable exists (i.e., can
be referred to)”.
- In other words, the set of program statements

over which the namespace that the variable is
defined in persists.

* Because there are several namespaces, there
can be different variables with the same name in
different scopes.

def f(x):
y = x ** 2
return y - 1

x = 1
y = f(x + 1)

Image from pythontutor.com

pythontutor.com

def f(x):
y = x ** 2
return y - 1

x = 1
y = f(x + 1)

Image based on pythontutor.com

pythontutor.com

The local assignment rule
* python considers a variable that is assigned

anywhere in the function suite to be a “local
variable” (this includes parameters).

* When a non-local variable is evaluated, its value
is taken from the (enclosing) global namespace.

* When a local variable is evaluated, only the
local namespace is checked.
- If the variable is not defined there, python

raises an UnboundLocalError.
* The rule considers only variable assignment.

def f(x):
return x ** y

>>> y = 2
>>> f(2)
4

def f(x):
if y < 1:

y = 1
return x ** y

>>> y = 2
>>> f(2)
UnboundLocalError:
local variable ’y’
referenced before
assignment

* Modifying is not assignment!
- Assignment changes/creates the association

between a name and a reference (in the
current namespace).

- A modifying operation on a mutable object –
including index and slice assignment – does
not change any name–value association.

def f(x):
y = x ** 2
f list.append([x,y])
return y

>>> f list = []
>>> f(2)
4
>>> f(3)
9
>>> f list
[[2, 4], [3, 9]]

Argument values are references

* When a function is called, its parameters are
assigned references to the argument values.
- If an argument value refers to a mutable object

(for example, a list), modifications to this
object made in the function are visible outside
the function’s scope.

def f(ns):
total = 0
while len(ns) > 0:

next = ns.pop(0)
total = total + next

return total

>>> a list = [1,2,3]
>>> f(a list)
6
>>> a list
[]

Image from pythontutor.com

def f(ns):
total = 0
while len(ns) > 0:

next = ns.pop(0)
total = total + next

return total

>>> a list = [1,2,3]
>>> l sum = f(a list)

pythontutor.com

Other namespaces

* python’s built-in functions are defined in a
separate namespace; it is always searched last
if a name is not found elsewhere.

* Imported modules are executed in their own
namespace.
- Names in a module namespace are accessed

by prefixing the name of the module.
* User-defined classes and objects (not covered

in this course) also have their own namespace

Guidelines for good functions

* Within a function, access only local variables.
- Use parameters for all inputs to the function.
- Return all function outputs (for multiple

outputs, return a tuple or list).
- ...except if the specific purpose of the function

is to send output elsewhere (e.g., print).
* Don’t modify mutable argument values, unless

the specific purpose of the function is to do that.
* Rule #4: No rule should be followed off a cliff.

Recursion

* A recursive function is often described as “a
function that calls itself”.

* Function calls form a stack: when the i th
function call ends, execution returns to where
the call was made in the (i − 1)th function suite.

* The function suite must have a branching
statement, such that a recursive call does not
always take place (“base case”); otherwise,
recursion never ends.

* Recursion is a way to think about how to solve
problems: reducing it to a smaller instance of
itself.

Example (contrived)

def f(x):
’’’Returns 2 ** x.
x is an integer >= 0.
’’’
if x == 0:

return 1 # base case
else:

y = f(x - 1) # recursive call
return 2 * y

1 def f(x):
...

2 y = f(2)

x = 2
3 if x == 0:
4 else:
5 y = f(x - 1)

x = 1
6 if x == 0:
7 else:
8 y = f(x - 1)

x = 0
9 if x == 0:

10 return 1

x = 1, y = 1
11 return 2 * y

x = 2, y = 2
12 return 2 * y

y = 4

Example: Counting selections
* Compute the number of ways to choose a

subset of k elements from a set of n, C(n, k).

2 from {�,4,©}

2 from {4,©}: 1

� out

1 from {4,©}

1 from {©}: 1

4 out

0 from {©}: 1

4 in

� in

* Recursive formulation:

C(n, k) = C(n − 1, k) + C(n − 1, k − 1)
C(n,0) = 1
C(n,n) = 1

def choices(n, k):
if k == n or k == 0:

return 1
else:

return choices(n - 1, k) + \
choices(n - 1, k - 1)

1 ans = choices(3,2)
n = 3, k = 2

2 if k == 0 or k == n:
3 else:
4 choices(n - 1, k)

n = 2, k = 2

5 if k == 0 or k == n:
6 return 1

7 choices(n - 1, k - 1)
n = 2, k = 1

8 if k == 0 or k == n:
9 else:

10 choices(n - 1, k)
n = 1, k = 1

11 if k == 0 or k == n:
12 return 1

13 choices(n - 1, k - 1)
n = 1, k = 0

14 if k == 0 or k == n:
15 return 1

16 return 1 + 1
17 return 1 + 2

ans = 3

4 choices(n - 1, k)
n = 2, k = 2

5 if k == 0 or k == n:
6 return 1

7 choices(n - 1, k - 1)
n = 2, k = 1

8 if k == 0 or k == n:
9 else:

10 choices(n - 1, k)
n = 1, k = 1

11 if k == 0 or k == n:
12 return 1

13 choices(n - 1, k - 1)
n = 1, k = 0

14 if k == 0 or k == n:
15 return 1

16 return 1 + 1
17 return 1 + 2

ans = 3

Example: Subset sum

* Given a list of n integers w0, . . . ,wn−1, is there a
subset of them that sums to exactly C?

(Also known as the “(exact) knapsack problem”:

⇒

w0 = 5 w1 = 2 w2 = 9 w3 = 1 C = 16.)

Example: Sudoku
3 1

3 1
4

1 2 4

1 3 1
3 1

4
1 2 4

2 3 1
3 1

4
1 2 4

3 3 1
3 1

4
1 2 4

4 3 1
3 1

4
1 2 4

· · · · · ·
2 1 3 1
3 1

4
1 2 4

2 2 3 1
3 1

4
1 2 4

2 3 3 1
3 1

4
1 2 4

2 4 3 1
3 1

4
1 2 4

