
COMP1730/COMP6730
Programming for Scientists

I/O and files



Outline

* Input and output
* Files and directories
* Reading and writing text files



Input and output



I/O: Input and Output

* A (common) way for a programs to interact with
the world.
- Reading data (keyboard, files, network).
- Writing data (screen, files, network).

* Scientific computing often means processing or
generating large volumes of data.



Terminal I/O
* print(...) generates output to the terminal

(typically, screen).
* input(...) prints a prompt and reads input

from the terminal (typically, keyboard).
- input always returns a string.

input str = input("Enter a number: ")
input int = int(input str)
...



Im
ag

e
fro

m
P

un
ch

&
E

nb
od

y



Files and directories



What is a file?
* A file is a collection of data on secondary

storage (hard drive, USB key, network file
server).

* A program can open a file to read/write data.

* Data in a file is a sequence of bytes (integer
0 ≤ b ≤ 255).
- The program reading a file must interpret the

data (as text, image, sound, etc).
- python & the operating system (OS) provide

support for interpreting data as text.



Text encoding (recap)
* Every character has a number.
* Unicode defines numbers (“code points”) for

>120,000 characters (in a space for >1 million).
Encoding
(UTF-8)

Font

Byte(s) Code point Glyph
0100 0101 (69) 69
1110 0010 (226)
1000 0010 (130)
1010 1100 (172) 8364



* A text file contains (encodings of) printable
characters (including spaces, newlines, etc).
- (python) program source code, HTML files,

etc.

* A binary file contains arbitrary data, which may
not correspond to printable characters.
- images, audio/video, word documents.



Directory structure
* Files on secondary storage are organised into

directories (a.k.a. folders).

* This is an abstraction
provided by the operating
system.
- It will appear differently on

different operating systems.
* The directory structure is

typically tree-like.



File path

* A path is string that identifies the location of a
file in the directory structure.

* Consists of directory names with a separator
between each; the last name in the path is the
name of the file.

* Two kinds of paths:
- Absolute
- Relative to the current working directory (cwd)



* When running a python file (script mode), the
current working directory (cwd) is the directory
where that file is.

* If the python interpreter was started in
interactive mode (without running a file), the
cwd is the directory that it was started from.

* The os module has functions to get (and
change) the current working directory.
>>> import os
>>> os.getcwd()
’/home/patrik/teaching/python’



Example: Posix (Linux, OSX)

* Single directory tree.
- Removable media and network file systems

appear at certain places in the tree.
* The separator is ’/’
* An absolute path starts with a ’/’

* ’..’ means the directory above.
* File and directory names are case sensitive.



/

home

lib

u123
Desktop
lab1
lab2

If the cwd is /home/u123/lab1
then

prob1.py refers to
/home/u123/lab1/prob1.py

../lab2/prob1.py refers to
/home/u123/lab2/prob1.py

../../../lib/libbz2.so
refers to /lib/libbz2.so

/home/u123/Lab1/prob1.py
does not exist.



Example: Windows
* One directory tree for each “drive”; each drive is

identified by a letter ("A" to "Z")
* The separator is ’\’
- Must be written ’\\’ in python string literals.

* Absolute path starts with drive letter and ’:’

* ’..’ means the directory above.
* File and directory names are not case sensitive.

"C:\\Users\\patrik\\test.py"
"..\\lab1\\exercise1.py"



Reading and writing text files



File objects
* When we open a file, python creates a file

object (or “stream” object).
- The file object is our interface to the file: all

reading, writing, etc, is done through methods
of this object.

- The type of file object (and what we can do
with it) depends on the access mode specified
when the file was opened.

- For example, text mode vs. binary mode,
read-only, write-only, read-write mode, etc.



Opening a file
* open(file path, access mode) opens a

file and returns the file object.

my file = open("notes.txt", "r")
first line = my file.readline()
second line = my file.readline()
my file.close()

* Close the file when done!
* After calling file obj.close(), we can do no

more read/write calls on file obj.



Access modes
* access mode is a string, made up of flags.

if the file exists... if it does not exist...
r read only Error
w write only Erases file content Creates a new (empty)

file
a write only Appends new content

at end of file
Creates a new (empty)
file

r+ read/write Reads/overwrites
from beginning of file Error

w+ read/write
Erases file content

Creates a new (empty)
file

a+ read/write Reads/overwrites
starting at end of file

Creates a new (empty)
file

b Open as binary file (default is text)



Caution

* Be careful with write modes. Erased or
overwritten files cannot be recovered.

* Can we check if an existing file will be
overwritten?
Yes!
- os.path.exists(file path) returns
True or False.

- Catching exceptions (more later in the course).



Reading text files
* file obj.readline() reads the next line of

text and returns it as a string, including the
newline character (’\n’).

* file obj.read(size) reads at most size
characters and returns them as a string.
- If size < 0, reads to end of file.

* If already at end-of-file, readline and read
return an empty string.

* file obj.readlines() reads all remaining
lines of text returning them as a list of strings.



File position

* A file is sequence of bytes.
- But the file object is not a sequence type!

* The file object keeps track of where in the file to
read (or write) next.
- The next read operation (or iteration) starts

from the current position.
* When a file is opened for reading (mode ’r’),

the starting position is 0 (beginning of the file).
* File position is not the line number.



* Suppose "notes.txt" contains:
First line
Second line
last line

* Then
>>> fo = open("notes.txt", "r")
>>> fo.read(4)
’Firs’
>>> fo.readline()
’t line\n’
>>> fo.readlines()
[’Second line\n’, last line\n’]



Iterating through a file

* pyton’s text file objects are iterable.
* Iterating yields one line at time.

my file = open("notes.txt", "r")
line num = 1
for line in my file:

print(line num, ’:’, line)
line num = line num + 1

my file.close()



Programming problem

* Read a python source code file, and
- print each line;
- prefix each line of code with a line number;
- for numbering, count only lines containing

code (not empty lines, or lines with only
comments).



Writing text files

* Access mode ’w’ (or ’a’) opens a file for
writing (text).

* file obj.write(string) writes the string
to the file.
- Note: write does not add a newline to the

end of the string.
* print(..., file=file obj) prints to the

specified file instead of the terminal.



Buffering

* File objects typically have an I/O buffer.
- Writing to the file object adds data to the

buffer; when full, all data in it is written to the
file (“flushing” the buffer).

* Closing the file flushes the buffer.
- If the program stops without closing an output

file, the file may end up incomplete.
* Always close the file when done!


