
COMP1730/COMP6730
Programming for Scientists

Modules and programs

Lecture outline

* python modules & import
* Commandline interface and scripting
* User interaction

Modules

Modules
* Every python file is a module.
- A module is a sequence of statements.
- Every module has a name.

* When the python shell runs in “script mode”, the
file it’s executing becomes the “main module”.
- Its name becomes ’ main ’.
- Its namespace is the global namespace.

* The first time a module is imported, that module
is loaded (executed); it may later be re-loaded.

* Every loaded module creates a separate
(permanent) namespace.

* When executing import modname, the python
interpreter:
- checks if modname is already loaded;
- if not (or if reloading), it:
- finds the module file (normally modname.py)
- executes the file in a new namespace;
- and stores the module object (roughly,

namespace) in the system dictionary of
loaded modules;

- and then associates modname with the
module object in the current namespace.

* Note: the Spyder IDE reloads all user-defined
modules on (first) import when running a file.

* The global variable name in every module
namespace stores the module name.

* sys.modules is a dictionary of all loaded
modules.

* dir(module) returns a list of names defined in
module’s namespace

* dir() lists the current (global) namespace.

>>> name
’ main ’
>>> import sys
>>> len(sys.modules)
...
>>> sys.modules[’math’]. name
’math’
>>> dir()
[..., sys]
>>> import math
>>> dir()
[..., sys, math]

def some useful function(x):
...

if name == ’ main ’:
this part will not execute when
the module is imported
print(some useful function(0))
...

* Code within the if statement will execute when
the module is run, but not when it’s imported
(“guarded main”).

* For example, test cases.

The commandline

* A commandline (“terminal” or
“shell”) is a text I/O interface
to the computer’s operating
system (OS).

* The shell is an interpreter for
a command (programming)
language. (Image from wikipedia)

* The languages of shells are (more or less)
different, but some aspects are fairly common.

* Some concepts from the commandline interface
explain how programs interact with the OS.

* To run a (executable) program, type its name.
- Where the OS searches for programs is

usually configurable.
- Alternatively, enter the full path.

* To run a python program (file):
$ python3 my prog.py

- Runs the python shell in “script mode”.

* Can pass arguments (strings) to the program:
$ python3 my prog.py arg1 "arg two"

* Inputs that the OS provides to the program:
- A list of commandline arguments (strings).
- A set of environment variables (key–value

pairs, both (byte) strings).
- Open files (or file-like objects) for “standard

input” and “standard output”.
* You can access these within python:
- sys.argv
- os.environ and os.getenv(var)
- sys.stdin and sys.stdout

* By default, input(..) reads sys.stdin and
print(...) writes to sys.stdout.

User interaction

* A general-purpose program (not solving a single
instance of a single problem) will need some
user input. For example:
- which data file? computation parameters;
- options (e.g., more or less output).

* Main goal: don’t make the user’s life harder than
it has to be.
- Know the use case; follow conventions.
- Reduce work, avoid repetition.
- Offer flexibility, but not at the cost of simplicity.

* If you’re writing a library (module), the “user” is
the programmer that will use its functions.

Example: Asking for a filename
* Make it a commandline argument.
- Use argparse or getopt module for

commandline processing.
* Typed input (input(..))
- Can use, and also customise, the readline

facility, or use the prompt toolkit module
(system-dependent).

- Can provide defaults or shortcuts.
* Open a “Select File” dialog box, using tkinter

(system-dependent).

* Example: the homework testing program.
* Needs an input (the file to test).
- Fixed name (edit program to change).
- Typed input?
- Dialog box?

* Who are the users, and what are their use
cases?
- Student: testing one file, many times.
- Marker: testing many files, once.

