
COMP1730/COMP6730
Programming for Scientists

Abstract data types and
concrete data structures



Lecture outline

* Abstract data types
* Data structures



Reminder: Code quality

* Good code organisation:
- raises the level of abstraction; and
- isolates subproblems and their solutions.

* The name of a function or type should suggest
what it does.

* Use the function docstring to elaborate.



Abstract data types

* The type of a value determines what can be
done with it (and what the result is).

* Conversely, we may define an abstract data
type (ADT) by the set of operations that can be
done on values of the type.

* Already seen examples:
- “sequence type” (length, index, slice)
- “iterable type” (for loop)

* No special syntax (or even a type name).



Interface
* An interface is a set of functions (or methods)

that implement operations (create, inspect and
modify) on the abstract data type.

* The interface creates an abstraction.
- For example, “a date has a year, a month and

a day” instead of “a date is a list with length 3”.
* The user of the ADT (that is, the programmer)

must use only the interface functions to operate
on values of the ADT – accessing/modifying the
structure of the value directly breaks the
abstraction.



def make date(year, month, day):
return [year, month, day]

def get year(adate):
return adate[0]

...

def is before(date1, date2):
return ((date1[0] < date2[0]) or

(date1[0] == date2[0] and
date1[1] < date2[1]) or

(date1[0] == date2[0] and
date1[1] == date2[1] and
date1[2] < date2[2]))



Why data type abstraction?

* It makes code easier to read and understand.
- For example,

get day(get date(cal entry))

instead of
cal entry[2][2]

* It makes code refactorable.
- The implementation behind the interface can

be replaced without changing any code that
uses it.



import datetime

def make date(year, month, day):
return datetime.date \

(year, month, day)

def get year(adate):
return adate.year

...

def is before(date1, date2):
return date1 < date2



Example: Networks

* A network (or undirected
graph) consists of nodes;
some pairs of nodes are
connected by links.

* Can represent physical
structure (e.g., a power
network), a social network,
logical relationships (e.g.,
synonymy).



* Interface for the Network ADT:
- Create a new network
- An empty network, or with a given

number/set of nodes.
- Add or remove a node.
- Add or remove a link between a pair of nodes.
- Modifies the network (no return value).

- Are a pair of nodes connected? (have a link)
- Enumerate the nodes connected to a given

node (it’s neighbours).



Data structures

* A concrete implementation of an abstract data
type must use some data structure – made up
of built-in python types – to store values.

* Typically, several alternative data structures can
implement an ADT.

* Consider:
- Ease of implementation
- Memory requirements
- Computational complexity of operations



Example: Implementations of ADT
network

* Store whether there is a link (True/False) for
each pair of nodes in a list-of-lists or 2-d array.
- Uses O(#nodes2) memory.
- Add/remove/check links in constant time.
- Collecting neighbours takes linear time.
- Insert or remove node?



* Store list or set of neighbours for each node.
- Uses O(#links) memory.
- #links is at most #nodes2, can be much less.

- Add/remove/check links:
- (amortised) constant time using python’s
set type;

- linear time using (unordered) lists.
- Neighbour sets available in constant time

(linear to copy).
- Insert or remove node?



Extra example: Sudoku
3 1

3 1
4

1 2 4

1 3 1
3 1

4
1 2 4

2 3 1
3 1

4
1 2 4

3 3 1
3 1

4
1 2 4

4 3 1
3 1

4
1 2 4

· · · · · ·
2 1 3 1
3 1

4
1 2 4

2 2 3 1
3 1

4
1 2 4

2 3 3 1
3 1

4
1 2 4

2 4 3 1
3 1

4
1 2 4



Summary

* Creating and using abstract data types helps
structure larger programs, making them easier
to write, debug, read and maintain.

* Several ways to implement ADTs in python:
- Function interface; and
- data structures using built-in python types.
- Defining classes (not covered in this course).


