
COMP1730/COMP6730
Programming for Scientists

Sequence types

Lecture outline

* Sequence data types
* Indexing & length
* Introduction to NumPy

Sequences

* A sequence contains zero or more values.

* Each value in a sequence has a position, or
index, ranging from 0 to n − 1.

* The indexing operator can be applied to all
sequence types, and returns the value at a
specified position in the sequence.
- Indexing is done by writing the index in square

brackets after the sequence value, like so:
sequence[pos]

Sequence data types

* python has three built-in sequence types:
- strings (str) contain only text;
- lists (list) can contain a mix of value types;
- tuples (tuple) are like lists, but immutable.

* Sequence types provided by other modules:
- e.g., NumPy arrays (numpy.ndarray).

Problem: Sensor modelling

* Time series of two measurements:

* IR sensor
(% of range)

* Tachometer
(1/360th rev.)

* Is there a linear relation between x and y?

* Fit a straight line (y = ax + b) as close to all of
the points as possible.
- This can be done by solving a least-squares

optimisation problem.
- Simpler idea: Calculate the average slope

between pairs of (adjacent) points.
* Need to remove or ignore “outliers”.
* Calculate residuals (ri = yi − (axi + b)) and

check if they are normally distributed.

The list type

* list is python’s general sequence type.
* To make a list, write a comma-separated list of

elements in square brackets:

>>> x = [1, 1.5, 3]
>>> x
[1, 1.5, 3]
>>> type(x)
<class ’list’>

Indexing & length

3.0 1.5 0.0 -1.5 -3.0list:

index: 0 1 2 3 4
-5 -4 -3 -2 -1

* In python, all sequences are indexed from 0.
* The index must be an integer.
* python also allows indexing from the sequence

end using negative indices, starting with -1.
* The length of a sequence is the number of

elements, not the index of the last element.

* len(sequence) returns sequence length.
* Sequence elements are accessed by writing the

index in square brackets, [].

>>> x = [3, 1.5, 0, -1.5, -3]
>>> x[1]
1.5
>> x[-1]
-3.0
>>> len(x)
5
>>> x[5]
IndexError: list index out of bounds

Introduction to NumPy

NumPy and SciPy
* The NumPy and SciPy libraries are not part of

the python standard library, but often considered
essential for scientific / engineering applications.

* The NumPy and SciPy libraries provide
- an n-dimensional array data type (ndarray);
- fast math operations on arrays/matrices;
- linear algebra, Fourier transform, random

number generation, signal processing,
optimisation, and statistics functions;

- plotting (via matplotlib).
* Documentation: numpy.org and scipy.org.

numpy.org
scipy.org

The NumPy ndarray type
* ndarray is a sequence type.
* All values in an array must be of the same type.
* Typically numbers (integers, floating point or

complex) or Booleans, but can be any type.
>>> import numpy as np
>>> x = np.array([1.0, 2, 3])
>>> x
array([1., 2., 3.])
>>> type(x)
<class ’numpy.ndarray’>
>>> x.dtype
dtype(’float64’)

Creating 1-dimensional arrays
>>> np.array([3,1.5,0,-1.5,-3])
array([3., 1.5, 0., -1.5, -3.])
>>> np.zeros(5)
array([0., 0., 0., 0., 0.])
>>> np.ones(3) * 5
array([5., 5., 5.])
>>> np.linspace(3, -3, 5)
array([3. , 1.5, 0. , -1.5, -3.])

>>> import numpy.random as rnd
>>> rnd.normal(0, 2, 10)
array([0.11224282, -1.84772958, ...

Element-wise operators

* Arithmetic (+,-,*,/,**,//,%), comparison
(==,!=,<,>,<=,>=) and logical (&,|) operators
can be applied to
- an ndarray and a single value: the operation

is done between each element of the array
and the value; or

- two ndarrays of the same size: the operation
is done between pairs of elements in equal
positions.

* Note: list + list does concatenation.

>>> x = np.array([-2.,-1.,0.,1.,2.])
>>> -(x ** 2) + 2
array([-2., 1., 2., 1., -2.])
>>> y = 2 ** x
>>> y
array([0.25, 0.5, 1., 2., 4.])
>>> x + y
array([-1.75, -0.5, 1., 3., 6.])
>>> x + array([1., -1.])
ValueError: operands could not be
broadcast with shapes (5,) (2,)

* NumPy provides most math functions (e.g.,
cos, exp, log, sqrt, etc) that also work
element-wise on arrays.

>>> x = np.linspace(-np.pi, np.pi, 9)
>>> np.cos(x)
array([-1.00e+00, -7.07e-01, 6.12e-17,

7.07e-01, 1.00e+00, 7.07e-01,
6.12e-17, -7.07e-01, -1.00e+00])

>>> np.sqrt(x)
RuntimeWarning: invalid value ...
array([nan, nan, 0., 1., 1.41421356])

Functions of arrays
>>> x = np.linspace(-1, 3, 5)
>>> np.min(x ** 2)
0.0
>>> np.max(x)
3.0
>>> np.sum(x)
5.0
>>> np.mean(x)
1.0
>>> np.std(x)
1.4142135623730951

Generalised indexing
* Most python sequence types support slicing –

accessing a subsequence by indexing a range
of positions:

sequence[start:end]

* Unique to NumPy array:
- Indexing with an array of integers selects

elements from the positions in the index array.
- Indexing with an array of Booleans selects

elements from the positions where the index
array contains True.

Slicing
* The slice range is “half-open”: start index is

included, end index is one after last included
element.
>>> x = np.array([3,1.5,0,-1.5,-3])
>>> x[1:4]
array([1.5, 0, -1.5])

3.0 1.5 0.0 -1.5 -3.0array:

index:

start end

0 1 2 3 4

Indexing with arrays

>>> x = np.array([3,1.5,0,-1.5,-3])
>>> i = np.array([0,1,4])
>>> x[i]
array([3., 1.5., -3.])
>>> j = (x == np.floor(x))
>>> j
array([True, False, True, False, True])
>>> x[j]
array([3., 0., -3.])

select "good" sample points:
ok = (y > np.min(y)) & (y < np.max(y))
compute y and x difference:
dy = y[ok][1:] - y[ok][0:-1]
dx = x[ok][1:] - x[ok][0:-1]
average slope:
a = np.mean(dy / dx)
find average intercept:
b = np.mean(y[ok] - a * x[ok])
compute residuals:
r = y[ok] - (a * x[ok] + b)

...or...

import scipy
ok = (y > np.min(y)) & (y < np.max(y))
fit a 1st degree polynomial:
p = scipy.polyfit(x[ok], y[ok], 1)
calculate r = y - p(x)
r = y[ok] - scipy.polyval(p, x[ok])

