
COMP1730/COMP6730
Programming for Scientists

Strings



Lecture outline

* Character encoding & strings
* Indexing, slicing & sequence operations
* Iteration over sequences



Characters & strings



Strings

* Strings – values of type str in python – are
used to store and process text.

* A string is a sequence of characters.
- str is a sequence type.

* String literals can be written with
- single quotes, as in ’hello there’
- double quotes, as in "hello there"
- triple quotes, as in ’’’hello there’’’



* Beware of copy–pasting code from slides (and
other PDF files or web pages).



* Quoting characters other than those enclosing a
string can be used inside it:
>>> "it’s true!"
>>> ’"To be," said he, ...’

* Quoting characters of the same kind can be
used inside a string if escaped by backslash (\):
>>> ’it\’s true’
>>> "it’s a \"quote\""

* Escapes are used also for some non-printing
characters:
>>> print("\t1m\t38s\n\t12m\t9s")



Character encoding
* Idea: Every character has a number.

* Baudot code
(1870).

* 5-bit code, but
also sequential
(“letter” and
“figure” mode).



Unicode, encoding and font
* Unicode defines numbers (“code points”) for

>120,000 characters (in a space for >1 million).

Encoding
(UTF-8)

Font

Byte(s) Code point Glyph

0100 0101 69
1110 0010
1000 0010
1010 1100 8364



* python 3 uses the unicode character
representation for all strings.

* Functions ord and chr map between the
character and integer representation:

>>> ord(’A’)
>>> chr(65 + 4)
>>> chr(32)
>>> chr(8364)
>>> chr(20986)+chr(21475)
>>> ord(’3’)

* See unicode.org/charts/.

unicode.org/charts/


More about sequences



Indexing & length (reminder)

Image from Punch & Enbody

* In python, all sequences are indexed from 0.
* ...or from end, starting with -1.
* The index must be an integer.
* The length of a sequence is the number of

elements, not the index of the last element.



* len(sequence) returns sequence length.
* Sequence elements are accessed by placing

the index in square brackets, [].

>>> s = "Hello World"
>>> s[1]
’e’
>>> s[-1]
’d’
>>> len(s)
11
>>> s[11]
IndexError: string index out of range



Slicing
* Slicing returns a subsequence:

s[start:end]

- start is the index of the first element in the
subsequence.

- end is the index of the first element after the
end of the subsequence.

* Slicing works on all built-in sequence types
(list, str, tuple) and returns the same type.

* If start or end are left out, they default to the
beginning and end (i.e., after the last element).



* The slice range is “half-open”: start index is
included, end index is one after last included
element.

>>> s = "Hello World"
>>> s[6:10]
’Worl’

Image from Punch & Enbody



* The end index defaults to the end of the
sequence.

>>> s = "Hello World"
>>> s[6:]
’World’

Image from Punch & Enbody



* The start index defaults to the beginning of the
sequence.

>>> s = "Hello World"
>>> s[:5]
’World’

Image from Punch & Enbody



>>> s = "Hello World"
>>> s[9:1]
’’
>>> s[-100:5]
’Hello’

* An empty slice (index range) returns an empty
sequence

* Slice indices can go past the start/end of the
sequence without raising an error.



Operations on sequences
* Reminder: value types determine the meaning

of operators applied to them.
* Concatenation: seq + seq
>>> "comp" + "1730"

* Repetition: seq * int
>>> "Oi! " * 3

* Membership: value in seq
- Note: str in str tests for substring.

* Equality: seq == seq, seq != seq.
* Comparison (same type): seq < seq, seq
<= seq, seq > seq, seq >= seq.



Sequence comparisons

* Two sequences are equal if they have the same
length and equal elements in every position.

* seq1 < seq2 if
- seq1[i] < seq2[i] for some index i and

the elements in each position before i are
equal; or

- seq1 is a prefix of seq2.

* Note: Comparison of NumPy arrays is
element-wise and returns an array of bool.



String comparisons

* Each character corresponds to an integer.
- ord(’ ’) == 32
- ord(’A’) == 65, . . ., ord(’Z’) == 90
- ord(’a’) == 97, . . ., ord(’z’) == 122

* Character comparisons are based on this.

>>> "the ANU" < "The anu"
>>> "the ANU" < "the anu"
>>> "nontrivial" < "non trivial"



Iteration over sequences



The for .. in .. statement

for name in expression :
suite

1. Evaluate the expression, to obtain an iterable
collection.
- If value is not iterable: TypeError.

2. For each element E in the collection:
2.1 assign name the value E ;
2.2 execute the loop suite.



for char in "The quick brown fox":
print(char, "is", ord(char))

vs.

s = "The quick brown fox"
i = 0
while i < len(s):

char = s[i]
print(char, "is", ord(char))
i = i + 1



Iteration over sequences

* Sequences are an instance of the general
concept of an iterable data type.
- An iterable type is defined by supporting the
iter() function.

- python also has data types that are iterable
but not indexable (for example, sets and files).

* The for .. in .. statement works on any
iterable data type.
- On sequences, the for loop iterates through

the elements in order.



String methods



Methods
* Methods are only functions with a slightly

different call syntax:

"Hello World".find("o")

instead of

str.find("Hello World", "o")

* python’s built-in types, like str, have many
useful methods.
- help(str)
- docs.python.org

docs.python.org


Programming problem

* Find a longest repeated substring in a word:
- ’backpack’ → ’ack’
- ’singing’ → ’ing’
- ’independent’ → ’nde’
- ’philosophically’ → ’phi’
- ’monotone’ → ’on’
- ’wherever’ → ’er’
- ’repeated’ → ’e’
- ’programming’ → ’r’ (or ’g’, ’m’)
- ’problem’ → ’’


