Semester 2, 2018: Lab 4

52 2018

Lab 4

Note: This lab has more programming problems than we expect everyone to finish during the lab time. If
you do not have time to finish all problems, you can continue working on them later (at home, if you have
a computer with python set up, in the CSIT lab rooms outside teaching hours, or on one of the computers
available across campus), or return to them in a later lab.

Objectives

The purpose of this week’s lab is to:

o understand the indexing of (1-dimensional) sequences;
e do some computations over sequences that require iterating through them using loops; and
o practice reading and debugging code.

Exercise 0: Reading and debugging code

The following are attempts to define a function that takes three (numeric) arguments and checks if any
one of them is equal to the sum of the other two. For example, any_one_is_sum(1, 3, 2) should return
True (because 3 == 1 + 2), while any_one_is_sum(0, 1, 2) should return False.

(a) All of the functions below are incorrect. For each of them, find examples of arguments that cause it to
return the wrong answer.

Function 1

def any_one_is_sum(a,b,c):
sum_c=a+b
sum_b=a+c
sum_a=b+c

if sum_c == atb:
if sum_b == c+a:
if sum_a == b+c:
return True
else:
return False

Function 2

def any_one_is_sum(a,b,c):
if b + ¢ ==
print (True)
if ¢c + b == a:
print (True)
else:
print(False)
return False

Function 3

def any_one_is_sum(a, b, c¢):
if at+b==c and at+c==b:
return True
else:
return False

(b) For each of the three functions above, can you work out how they are intended to work? That is, what
was the idea of the programmer who wrote them? What comments would be useful to add to explain the
thinking? Is it possible to fix them by making only a small change to each function?

Exercise 1: Debugging loops

The following are two attempts to define a function that computes a sum. (The sum is an approximation
of the integral of the function 1/x over the interval from lower to upper. The bugs in each function below
are unrelated to this particular function.) Each function uses a while loop that may never terminate. The
loop may terminate for some arguments, but not for others.

For each of the functions, find arguments that cause the loop to terminate as well as arguments that cause
it to not terminate. The arguments should all be numbers, lower should be less than upper, and nterms
should be a positive integer (not zero).

Hint: Add print calls inside the loop to see what is happening. Print the variables that appear in the
loop condition, so you can see if they are changing or not (if they are not, then the loop is stuck).

Function 1

def integrate(lower, upper, nterms):
divide the interval into nterms even-sized parts
delta = (upper - lower) / nterms
total = 0O
while lower+delta >= upper:
compute area from lower to lower + delta
area = ((1/lower) + (1/(lower + delta))) * delta / 2
add to total area
total = total + area
lower = lower + delta
return total

Function 2

def integrate(lower, upper, nterms):
divide the interval into nterms even-sized parts
delta = (upper - lower) / nterms
total = 0
while lower < upper:
compute area from lower to lower + delta
area = ((1/lower) + (1/(lower + delta))) * delta / 2
add to total area
total = total + area
delta = (upper - lower) / nterms
lower = lower + delta
return total

Sequence types

We have already seen a number of times that all values in python have a type, such as int, float, str, etc.
To determine the type of a value we can use the function type(_some expression_). python has three
built-in sequence types: lists (type list), strings (type str) and tuples (type tuple). These sequence
types are used to represent different kinds of ordered collections. In this lab, we will only use lists, and we
will only see a few of the many things that can be done with them. We will return to lists again after the
break to examine them in more detail.

To write a list literal, write its elements, separated by commas, in a pair of square brackets:

In [1]: x = [1, 2, 3, 4, 5, 6]

In [2]: type(x)
OQut [2]:

The elements that you write can be expressions. These are evaluated, and the resulting values become the
elements of the list:

In [3]: x=1[2, 2+1, 2 %2, 2+ 3]

In [2]: x

Out [2]:

Indexing sequences

Every element in a sequence has an index (position). The first element is at index 0. The length of a

sequence is the number of elements in the sequence. The index of the last element is the length minus one.
The built-in function len returns the length of any sequence.

Indexing a sequence selects a single element from the sequence (for example, a character if the sequence is
a string). python also allows indexing sequences from the end, using negative indices. That is, -1 also
refers to the last element in the sequence, and -len(seq) refers to the first.

Exercise 2

Execute the following in the python shell. For each expression, try to work out what the output will be
before you evaluate the expression.

In [1]: my_list = [1, 2, 3, 4, 5, 6]

In [2]: my_list[1]
Out [2]:

In [3]: my_list[4]
Out [3]:

In [4]: my_list[-1]
Out [4]:

In [6]: L = len(my_list)

In [6]: my_list[L - 1]
Out [6]:

In [7]: my_list[1 - L]
Out [7]:

They should all run without error. Is the result of each expression what you expected?

Iteration over sequences

python has two kinds of loop statements: the while loop, which repeatedly executes a suite as long as
a condition is true, and the for loop, which executes a suite once for every element of a sequence. (To
be precise, the for loop works not only on sequences but on any type that is iterable. All sequences are
iterable, but later in the course we will see examples of types that are iterable but not sequences.)

Both kinds of loop can be used to iterate over a sequence. Which one is most appropriate to implement
some function depends on what the function needs to do with the sequence. The for loop is simpler to use,
but only allows you to look at one element at a time. The while loop is more complex to use (you must
initialise and update an index variable, and specify the loop condition correctly) but allows you greater
flexibility; for example, you can skip elements in the sequence (increment the index by more than one) or
look at elements in more than one position in each iteration.

In the lectures so far, we have only used while loops, and they are sufficient to solve all the problems in
this lab. We will introduce the for loop next week. However, if you want to try using for loops, their
syntax and execution is described in the text books (Downey: Section “Traversal with a for loop” in
Chapter 8; Punch & Enbody: Sections 2.1.4 and 2.2.13).

Exercise 3

The following function takes one argument, which should be sequence of numbers, and computes the
average of the numbers in the list:

def average(numbers) :
total = 0
index = 0
while index < len(numbers):
total = total + numbers[index]
index = index + 1
return total / len(numbers)

Test the function with some example inputs. For example

In [1]: average([1l, 2, 3, 4, 5])
Out [1]:

In [2]: average([3, 4, 3, 11)
Out [2]:

Note that the value returned is always a floating point number (type float) even if the average happens
to be an even integer.

(a) python has a few built-in functions that work on sequences (of any type): min(seq), max(seq) and
sum(seq) all do what you would expect them to. (Note, however, that sum only works on sequences that

contain only numbers.) The function sorted returns a list with the elements of the argument sequence in
sorted order.

Write a new version of the averaging function that uses sum.

(b) Write a function most_average (numbers) which finds and returns the number in the input that is
closest to the average of the numbers. (You can assume that the argument is a sequence of numbers.)
By closest, we mean the one that has the smallest absolute difference from the average. You can use the
built-in function abs to find the absolute value of a difference. For example, most_average([1, 2, 3,
4, 5]) should return 3 (the average of the numbers in the list is 3.0, and 3 is clearly closest to this).
most_average([3, 4, 3, 1]) should also return 3 (the average is 2.75, and 3 is closer to 2.75 than is
any other number in the list).

You can use the function above, or the one you just wrote, to compute the average.

Exercise 3(c)

Write a function count_negative (numbers) that takes as argument a sequence of numbers and returns
number of negative numbers in the sequence. For example, count_negative([-2, -1, 0, 1, 2]) and
count_negative([2, -2, 1, -1, 0]) should both return 2, since there are two negative numbers in
each argument list. count_negative([5, 0, 9]) should return 0, as there are no negative numbers in
the input list.

Also test your function on an empty list (that is, a list with no elements). An empty list can be created
with the expression [] or 1list(). Does your function work?

Exercise 4

A sequence of numbers is said to be (non-strictly) increasing if each element is less than or equal to the
next element in the sequence. For example [1, 5, 9] and [3, 3, 4] are both increasing, but [3, 4, 2]
is not.

Here are two function that are meant to return True if the argument sequence is increasing, and False
otherwise. However, both functions have bugs.

Function 1

def is_increasing(seq):
i=0
while i < len(seq):
if seq[i + 1] < seq[i]l:
return False
i=1i+1
return True

Function 2

def is_increasing(seq):
i = len(seq) - 1
while i >= O:
if seqli] < seql[i - 1]:
return False
i=1i-1
return True

(a) For each of the two functions, find, if possible, an example of an argument sequence that cause a
runtime error due to a list index being out of range. (This may or may not be possible for both functions.)

(b) For each of the two functions, find, if possible, examples of arguments that do not cause a runtime error,
but makes the function return the wrong value. (This may or may not be possible for both functions.)

(c) Write a correct function that determines if an argument sequence is increasing.
List comprehension and operations (optional)

python has a mechanism for writing compact expressions that create lists, called list comprehension. The
general form of a comprehension is

[element__exp for varname in iterable_exp |

iterable_exp should be an expression that evaluates to an iterable type (for example, a sequence), and the
comprehension creates a list whose elements are the result of evaluating element__exp for each element in
the iterable value. The variable varname is assigned each value from the iterable in turn, and can be used
in the element_ exp. For example,

[2 #x k for k in [0, 1, 2, 3, 4]]

will create the list with elements 2 ** 0, 2 ** 1, etc, up to 2 ** 4 i.e, thelist [1, 2, 4, 8, 16 1].

The built-in function range(n) returns an iterable value whose elements are the integers 0, 1, etc, up to
n-1. Thus, the comprehension above could also be written

[2 *x k for k in range(5)]

You can read more about list comprehensions in Section “List comprehensions” of Chapter 19 in Downey’s
book, or Section 7.10 in Punch & Enbody’s book.

python also allows two operators to applied to lists: + and *. + applied to lists means concatenation. That
is, if A and B are lists, then A + B is a list whose elements are all those in A followed by all those in B. For
example,

In [1]: [1, 2, 3] + [7, 8]
Out [1]: [1, 2, 3, 7, 8]

* applied to a list and an integer creates repetition of the elements of the list that many times. For example:

In [2]: [1, 2, 3] * 2
Qut [2]: [1, 2, 3, 1, 2, 3]

Exercise 5 (optional)

Try using list comprehensions, the range function and the two list operations + and * to write compact
expressions to create the following lists:

o A list containing N elements that all have the same value, e.g. all are 1.

o A list of integers that counts up from -N to N, in steps of K. For example, for N = 2 and K = 1, the
list should be [-2, -1, 0, 1, 2].

o A list of N integers whose value is the same as their index (position in the list) plus 1, that is,
mylist[0] == 1, mylist[1] == 2 mylist[2] == 3, etc.

Programming problems

Note: These are more substantial programming problems. We do not expect that everyone will finish all of
them during the lab time. If you do not have time to finish them during the lab, you can continue working
on them later (at home, in the CSIT labs after teaching hours, or on one of the computers available in the
university libraries or other teaching spaces), or come back to them later in the course.

Closest matches

(a) Write two functions, smallest_greater(seq, value) and greatest_smaller(seq, value), that
take as argument a sequence and a value, and find the smallest element in the sequence that is greater
than or equal to the given value, and the greatest element in the sequence that is smaller than or equal to
the given value, respectively.

For example, if the sequence is ‘[3, 1, 13, 5, 9] and the target value is ‘6’, the smallest greater element is 9
and the greatest smaller element is 5.

e You can assume that all elements in the sequence are of the same type as the target value (that is, if
the sequence is a list of numbers, then the target value is a number).

e You should not assume that the elements of the sequence are in any particular order.

¢ You should only use operations on the sequence that are valid for all sequence types.

e What happens in your functions if the target value is equal to one of the elements in the sequence?

e« What happens in your functions if the target value is smaller or greater than all elements in the
sequence?

(b) Same as above, but assume the elements in the sequence are sorted in increasing order; can you find
an algorithm that is more efficient in this case?

Counting duplicates

If the same value appears more than once in a sequence, we say that all copies of it except the first are
duplicates. For example, in [-1, 2, 4, 2, 0, 4], the second 2 and second 4 are duplicates.

Write a function count_duplicates(seq) that takes as argument a sequence and returns the number of
duplicate elements (for example, it should return 2 for the sequence above). Your function should work on
any sequence type (for example, both lists and strings), so use only operations that are common to all
sequence types (such as indexing and checking the length). For the purpose of deciding if an element is a
duplicate, use standard equality, that is, the == operator.

Putting stuff in bins

A histogram is way of summarising (1-dimensional) data that is often used in descriptive statistics. Given
a sequence of values, the range of values (from smallest to greatest) is divided into a number of sections
(called “bins”) and the number of values that fall into each bin is counted. For example, if the sequence is
[2.09, 0.5, 3.48, 1.44, 5.2, 2.86, 2.62, 6.31], and we make three bins by placing the dividing
lines at 2 and 4, the resulting counts (that is, the histogram) will be the sequence 2, 4, 2, because there
are 2 elements less than 2, 4 elements between 2 and 4, and 2 elements > 4.

(a) Write a function count_in_bin(values, lower, upper) that takes as argument a sequence of numbers
and two values that define the lower and upper sides of a bin, and counts the number of elements in the
sequence that fall into this bin. You should treat the bin interval as open on the lower end and closed
on the upper end; that is, use a strict comparison lower < element for the lower end and a non-strict
comparison element <= upper for the upper end.

(b) Write a function histogram(values, dividers) that takes as argument a sequence of values and a
sequence of bin dividers, and returns the histogram as a sequence of a suitable type (say, a list) with the
counts in each bin. The number of bins is the number of dividers + 1; the first bin has no lower limit and
the last bin has no upper limit. As in (a), elements that are equal to one of the dividers are counted in the
bin below.

For example, suppose the sequence of values is the numbers 1,..,10 and the bin dividers are [2, 5, 7];
the histogram should be [2, 3, 2, 3].

To implement this function, you may need to grow the size of the list that represents the histogram. You
can do this with the list concatenation operator: if mylist is a list (which can be empty) and x is a value
(number) that you want to add to it, then the assignment mylist = mylist + [x] adds x to the end of
mylist. You can also use list comprehension, as described above.

To test your function, you can create arrays of random values using NumPy’s random module:

In [1]: import numpy.random as rnd
In [2]: values = rnd.normal(0, 1, 50)

This creates an array of 50 numbers drawn according to the normal distribution with mean 0 and standard
deviation 1. The following creates 10 evenly sized bins covering the range of values:

In [1]: import numpy as np
In [2]: range = np.max(values) - np.min(values)
In [3]: dividers = (np.arange(l, 10) * (range / 10)) + np.min(values)

As you increase the size of the value array, you should find that the histogram becomes more symmetrical
and more even.
You can also test your function by comparing it with the histogram function provided by NumPy (see

help(numpy.histogram)).

10

	Lab 4
	Objectives
	Exercise 0: Reading and debugging code
	Exercise 1: Debugging loops
	Sequence types
	Indexing sequences
	Exercise 2
	Iteration over sequences
	Exercise 3
	Exercise 3(c)

	Exercise 4
	Function 1
	Function 2
	Exercise 5 (optional)

	Programming problems
	Closest matches
	Counting duplicates
	Putting stuff in bins

