
Semester 2, 2018: Lab 5

S2 2018

Lab 5

Note: If you do not have time to finish all exercises (in particular, the programming problems) during the
lab time, you should continue working on them later. You can do this at home (if you have a computer
with python set up), in the CSIT lab rooms outside teaching hours, or on one of the computers available
in the university libraries or other teaching spaces.

If you have any questions about or difficulties with any of the material covered in the course so far, ask
your tutor for help during the lab.

Objectives

The purpose of this week’s lab is to:

• review two of python’s built-in sequence types - strings and lists;
• iterate over sequences using the for loop; and
• investigate some of the built-in methods for strings.

The string type

Strings (type str) is python’s type for storing text. A string is a sequence, but unlike other sequence types
(list, tuple, and numpy.ndarray, for example) a string can only contain characters.

The type of a value (“object”) determines what we can do with it: For example, we can do arithmetic
on numbers, and we can ask for the length of a sequence (using the len function), but we cannot ask
for the length of a number, or do much arithmetic with strings. Some operations can be done on several
value types, but have different effects for different types. For example, using the + operator on two strings
concatenates them: thus, "1.234" + "1.234" evaluates to "1.2341.234", whereas adding two floating
point numbers 1.234 + 1.234 evaluates to 2.468.

1

Writing string literals

Recall that a literal is an expression that represents a constant value - like a 1 represents the integer one,
or "abc" represents the three-letter string abc. String literals in python are written by enclosing them in
either single, double or triple quotation marks:

In [1]: str1 = 'a few words'

In [2]: str2 = "a few words"

In [3]: str3 = '''a few words'''

In [4]: str1 == str2
Out [4]: ...

In [5]: str2 == str3
Out [5]: ...

(Note that the triple quote is written by typing three single quotes.) There is no difference between single-
and double-quoted strings. The triple quote has the special ability that it can stretch over several lines:

In [1]: many_line_string = '''This is line 1.
This is the second line.
And this is line three.'''

In [2]: many_line_string
Out [2]: ...

In [3]: print(many_line_string)
...

Note the difference between how many_line_string is displayed when you evaluate the expression and
when you print it. What is the ’\n’ character?

Remember that a string enclosed in one type of quotation marks can not containt the same type of
quotation marks (unless they are escaped - see the lecture slides on strings), but can contain the other
types.

Exercise 0

Write string literals for each of the following sentences:

• The possessive form of ‘it’ is ‘its’ - “it’s” is an abbreviation of “it is”.
• A ‘” is three ‘but two’ do not make a “.

2

Note that the first sentence should be on two lines.

Use the print function to verify that your strings are displayed correctly. Try writing them both with and
without using triple quotes.

Character encoding

A string is a sequence (ordered collection) of characters.

Characters (like every other type of information stored in a computer) are represented by numbers.
Interpreting a number as a character requires an encoding; python 3 uses the unicode standard for encoding
characters in strings.

Python provides the ord and chr functions for translating between numbers and the characters they
represent: ord(a_character) returns the corresponding character code (as an int) while chr(an_integer)
returns the character that the integer represents.

Exercise 1

Try the following:

In [1]: ord('a')
Out [1]: ...

In [2]: ord('A')
Out [2]: ...

In [3]: chr(91)
Out [3]: ...

In [4]: chr(92)
Out [4]: ...

In [5]: chr(93)
Out [5]: ...

In [6]: chr(20986)+chr(21475)
Out [6]: ...

In [7]: chr(5798) + chr(5794) + chr(5809) + chr(5835) + chr(5840) + chr(5830) + chr(5825) + chr(5823)
Out [7]: ...

Remember that characters outside the ASCII range (unicode numbers above 255) may not display properly,
if the computer you are using does not have a font for showing those characters. Also, many of the
characters below number 32 are so called “non-printable” control characters, which may not be displayed.

3

http://unicode.org

Sequences

Remember that:

• str and list are sequence types.
• A string (value of type str) can only contain characters, while a list can contain elements of any

type - including a mix of elements of different types in the same list.

Exercise 2

Operations on python’s built-in sequence types are summarised in this section of the python library
reference.

To remind yourself what you can do with a sequence, run the following in the python shell:

In [1]: aseq = "abcd"

In [2]: type(aseq) # 1. what type of sequence is this?
Out [1]: ...

In [3]: aseq + aseq # 2. concatenation
Out [1]: ...

In [4]: aseq * 4 # 3. repetition
Out [1]: ...

In [5]: aseq[0] # 4. Indexing
Out [1]: ...

In [6]: type(aseq[0])
Out [1]: ...

In [7]: aseq[-2]
Out [1]: ...

In [8]: aseq[1:-2] # 5. Slicing
Out [1]: ...

In [9]: aseq[1:2] # 5b.
Out [1]: ...

In [10]: bseq = "abdc"

In [11]: aseq < bseq # 6. Comparison
Out [1]: ...

4

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

In [12]: for elem in aseq: # 7. Iteration, using a for loop.
print(elem)

In [13]: min(aseq) # 8. built-in functions: min, max, sorted
Out [1]: ...

In [14]: max(aseq)
Out [1]: ...

In [15]: sorted(aseq)
Out [1]: ...

Next, try the operations above with a different sequence type, this time a list:

In [1]: aseq = [1,2,3,4]

In [2]: bseq = [1,3,2,4]

In [3]: type(aseq) # 1. what type of sequence is this?
Out [1]: ...

2 - 8 as above

This experiment will show you some important differences, but also some similarities, between strings and
lists:

• Slicing a list returns a list (test 5b).
• Ordering comparisons are defined the same way for lists as for strings.

The built-in functions min and max and sorted are applicable to any sequence type (in fact, to any
iterable type). Look them up using python’s help function. What happens if you apply them to an empty
sequence?

Iteration over sequences

Python has two kinds of loop statements: the while loop, which repeatedly executes a suite as long as
a condition is true, and the for loop, which executes a suite once for every element of a sequence. (To
be precise, the for loop works not only on sequences but on any type that is iterable. All sequences are
iterable, but later in the course we will see examples of types that are iterable but not sequences.)
Both kinds of loop can be used to iterate over a sequence. Which one is most appropriate to implement
some function depends on what the function needs to do with the sequence. The for loop is simpler to use,
but only allows you to look at one element at a time. The while loop is more complex to use (you must
initialise and update an index variable, and specify the loop condition correctly) but allows you greater
flexibility; for example, you can skip elements in the sequence (increment the index by more than one) or
look at elements in more than one position in each iteration.

5

Exercise 3

(a) In lab 4, you wrote a function to count the number of negative numbers in a list of numbers. Here is
an example of a solution to this problem, implemented using a while loop:

def count_negative(array):
count = 0
index = 0
while index < len(array):

if array[index] < 0:
count = count + 1

index = index + 1
return count

Rewrite this function so that it uses a for loop instead.

(b) Write a function called count_capitals that takes a string argument and returns the number of
capital (upper case) letters in the string. The function should look very similar to the one you wrote for
the previous exercise.

To do this, you will need to determine if a letter is a capital. It will be helpful to know that in the unicode
character encoding, the capital letters (of the English alphabet) are ordered sequentially; that is ord(’A’)
+ 1 == ord(’B’), ord(’A’) + 2 == ord(’C’), etc, up to ord(’A’) + 25 == ord(’Z’). (Alternatively,
have a look at the documentation of python’s string methods; there are several that help you do things
with letter case.)

(c) (advanced) Is it possible to write a general function count that takes a sequence and some property X
and counts how many elements in it have that property?

Hint: Functions are values in python. You can pass a function as an argument to another function.

(d) Two other functions that you were asked to write in lab 4 were most_average and is_increasing.
Can both of these be written using a for loop? Is the while loop more suitable for either one of the two
problems?

Slicing

Python’s built-in sequence types (which include type str) provide a mechanism, called slicing, to select
parts of a sequence (that is, substrings if the sequence happens to be a string). It is done using the notation
sequence[start:end]. There is also an extended form of slicing, which takes three arguments, written
sequence[start:end:step].

(Punch & Enbody’s book has a detailed description of slicing, including its extended form, in Section 4.1.5
(page 183). Downey’s book discusses slicing in Section “String Slices” in Chapter 8; the extended form of
slicing is only briefly mentioned in Exercise 8-3.)

6

Exercise 4(a)

To make sure you understand what the arguments in a slicing expression mean, run through the following
examples. For each expression, try to work out what the output will be before you evaluate the expression.

In [1]: my_string = "Angry Public Swamp Methods"

In [2]: L = len(my_string)

In [3]: my_string[1:L]
Out [3]: ...

In [4]: my_string[0:L - 1]
Out [4]: ...

In [5]: my_string[0:L:2]
Out [5]: ...

In [6]: my_string[L:0:-1]
Out [6]: ...

In [7]: my_string[6:6+6]
Out [7]: ...

In [8]: my_string[11:11-6:-1]
Out [8]: ...

In [9]: my_string[2*L]
Out [9]: ...

In [10]: my_string[0:2*L]
Out [10]: ...

(“Angry Public Swamp Methods” - Why such a strange, non-sense string? It’s designed to make it easier
for you to see what happens when you try different slicing expressions. Can you see what’s special about
it? Hint: Remember from the earlier exercise that ord(’S’) is not equal to ord(’s’) - ‘S’ and ‘s’ are
different characters.)

Exercise 4(b)

Use the statement

In [1]: my_list = [i + 1 for i in range(26)]

to assign my_list a list of integers of the same length as the string used in the previous exercise, and try
the slicing expressions on my_list instead of my_string. Is the result of all expressions what you expect?

7

String methods

A “method” is the same thing as a function, but it uses a slightly different call syntax. A method is always
called on a particular object (value). A method call,

object.method(...)

can be thought of as “on this object, perform that method”.

For now, we will just explore some of the rich set of methods that python provides for performing operations
on built-in data types, such as strings. You can find the documentation of pythons string methods at
http://docs.python.org/3/library/stdtypes.html#text-sequence-type-str, or by using the built-in help
function in the python shell.

Try the following:

In [1]: sentence = "the COMP1730 lectures are boring, but the labs are great"

In [2]: sentence.capitalize()
Out [2]: ...

In [3]: sentence.swapcase()
Out [3]: ...

In [4]: sentence.count("e")
Out [4]: ...

In [5]: sentence.find("lectures")
Out [5]: ...

In [6]: sentence.find("exciting")
Out [6]: ...

In [7]: sentence.split(" ")
Out [7]: ...

In [8]: sentence.upper().find("LECTURES")
Out [8]: ...

In [9]: sentence.find("LECTURES").upper()
Out [9]: ...

After each method call, try print(sentence). Did any of the methods modify the initial string?

8

http://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

Exercise 5

(From Punch & Enbody, Chapter 4: Question 14, on page 221.) There are five string methods that modify
case: capitalize, title, swapcase, upper and lower.

• Look up each of these methods in the python on-line documentation or using the built-in help
function. (Note: To find the documentation of a string method using help, you must prefix the
method name with str.; that is, use help(str.capitalize) instead of help(capitalize).)

• Based on your understanding, can you predict what will be the effect of each of these methods on
the following strings:

s1 = "turner"
s2 = "north lyneham"
s3 = "AINSLIE"
s4 = "NewActon"?

To check if your understanding is correct, write python code to perform the operation, run it and see.

Programming problems

Note: We don’t expect everyone to finish all these problems during the lab time. If you do not have time
to finish these programming problems in the lab, you should continue working on them later (at home, in
the CSIT labs after teaching hours, or on one of the computers available in the university libraries or other
teaching spaces).

Ceasar cipher

A Ceasar cipher is based on simply shifting the letters in the alphabet by a fixed amount. For example we
might do the following:

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

So each ‘A’ in the message is replaced by a ‘D’, each ‘M’ by a ‘P’, and so on. That is, there is a shift of 3
letters. Note that the alphabet wraps around at the end: An ‘X’ (third from the end) is replaced by an
‘A’, etc.

(a) Write a function that takes two arguments, a string to encrypt and a shift value (an integer) to use for
encrypting it, and returns the encrypted string. Apply the same shift to both lower and upper case letters.
Do not alter the non-alphabetical characters (like space, comma etc).

Examples:

9

http://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

• Encrypting “Et tu, Brutus!” with a shift of 3 should return “Hw wx, Euxwxv!”.
(Wikipedia has a long list of Latin phrases if you want to encrypt more examples in Latin.)

• Encrypting “IBM” with a shift of -1 should return “HAL”.

To decrypt a string, you can call the same function with the negative of the shift that was used to encrypt
it. Also note that the function is invariant of the shift modulo 26: that is, a shift of 29 is the same as a
shift of 3 (3 == 29 % 26), and a shift of -1 is the same as a shift of 25 (25 == -1 % 26).

(b) To break the Caesar cipher you just need to guess the shift. Try the following three approaches:

• There are only 25 possible different shifts to decrypt the code. Write a function that takes an
encrypted string and prints out the first five or so words decrypted using successively larger shifts
(up to 25). See if you can guess based on this which is the right shift value. (How many words do
you need to check to tell the right shift value from the others?)

• Repeat the above, but this time decrypt the entire message using increasing shift values. For each
shift value search the decrypted message to find how many of the following 40 “common” three letter
words exist:

the,and,for,are,but,not,you,all,any,can,
her,was,one,our,out,day,get,has,him,his,
how,man,new,now,old,see,two,way,who,boy,
did,its,let,put,say,she,too,use,dad,mom

Return the shift value that gives the highest number of different three letter words. Does this
automatic process succeed in breaking the cipher? (How did you deal with upper and lower case
letters?)

• Next, consider the occurrence of individual letters. The most common letter in English is “e”, which
occurs nearly 13% of the time. For the encrypted text, determine the most frequently occurring
letter, assume it should be an “e”, from this determine the shift, and decrypt the message. Does this
automatic process correctly break the cipher? (Again - how did you deal with upper and lower case?)

Tests Here are some encrypted strings that you can try your decryption methods on:

• ”’Awnhu pk neoa wjz awnhu pk xaz Iwgao w iwj dawhpdu, xqp okyewhhu zawz”’
(Note the use of triple quotes because the string contains a line break.)

• ’"Jcstghipcsxcv xh iwpi etctigpixcv fjpaxin du zcdlatsvt iwpi vgdlh ugdb iwtdgn,
egprixrt, rdckxrixdc, phhtgixdc, tggdg pcs wjbxaxipixdc." (Gjat 7: Jht p rdadc
puitg pc xcstetcstci rapjht id xcigdsjrt p axhi du epgixrjapgh, pc peedhxixkt, pc
pbeaxuxrpixdc dg pc xaajhigpixkt fjdipixdc. Ugdb Higjcz & Lwxit, "Iwt Tatbtcih du
Hinat".)’
(Note that the string is enclosed in single quotes because it contains double quotes.)

10

https://en.wikipedia.org/wiki/List_of_Latin_phrases_%28full%29
http://grammar.yourdictionary.com/word-lists/common-three-letter-words.html
http://grammar.yourdictionary.com/word-lists/common-three-letter-words.html
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency

• "Cywo cmsoxdscdc gybu cy rkbn drobo sc xy dswo vopd pyb cobsyec drsxusxq. (kddbsledon
dy Pbkxmsc Mbsmu)"

You should also make up your own tests (use the encryption function you wrote to encrypt sentences, then
test if your cipher-breaking functions find the correct shift!)

Pig Latin

Pig Latin is a game of alterations played on words. To translate an English word into Pig Latin, the initial
consonant sound is transposed to the end of the word and an “ay” is affixed. Specifically, there are two
rules:

• If a word begins with a vowel, append “yay” to the end of the word.

• If a word begins with a consonant, remove all the consonants from the beginning up to the first vowel
and append them to the end of the word. Finally, append “ay” to the end of the word.

For example,

• dog => ogday
• scratch => atchscray
• is => isyay
• apple => appleyay

Write a function that takes one argument, a string, and returns a string with each word in the argument
translated into Pig Latin.

Hints:

• The split method, when called with no additional arguments, breaks a string into words, and
returns the words in a list.

• Slicing is your friend: it can pick off the first character for checking, and you can slice off pieces of a
string and use string concatenation (the + operator) to make a new word.

• Making a string of vowels allows use of the in operator: vowels="aeiou" (how do you make this
work with both upper and lower case?)

• Test your function with a diverse range of examples. Your tests should cover all cases (for example,
test words beginning with a vowel and words beginning with a consonant). Pay particular attention
to edge cases (for example, what happens if the word consists of just one vowel, like “a”? what
happens if the string is empty?).

11

	Lab 5
	Objectives
	The string type
	Writing string literals
	Exercise 0
	Character encoding
	Exercise 1

	Sequences
	Exercise 2
	Iteration over sequences
	Exercise 3
	Slicing
	Exercise 4(a)
	Exercise 4(b)
	String methods
	Exercise 5
	Programming problems
	Ceasar cipher
	Pig Latin

