
COMP1730/COMP6730
Programming for Scientists

Abstract data types and
concrete data structures

Lecture outline

* Abstract data types
* Data structures
* Dictionaries & sets

Reminder: Code quality

* Good code organisation:
- raises the level of abstraction; and
- isolates subproblems and their solutions.

* The name of a function or type should suggest
what it does, or is used for.

* Use the function docstring to elaborate.

Abstract data types

* The type of a value determines what can be
done with it (and what the result is).

* Conversely, we may define an abstract data
type (ADT) by the set of operations that can be
done on values of the type.

* Already seen examples:
- “sequence type” (length, index)
- “iterable type” (for loop)

* No special syntax.

Interface
* An interface is a set of functions (or methods)

that implement operations (create, inspect and
modify) on the abstract data type.

* The interface creates an abstraction.
- For example, “a date has a year, a month and

a day” instead of “a date is a list with length 3”.
* The user of the ADT (that is, the programmer)

must use only the interface functions to operate
on values of the ADT – accessing/modifying the
structure of the value directly breaks the
abstraction.

Why data type abstraction?

* It makes code easier to read and understand.
- For example,

get day(get date(cal entry))

instead of
cal entry[2][2]

* It makes code refactorable.
- The implementation behind the interface can

be replaced without changing any code that
uses it.

Data structures

* A concrete implementation of an abstract data
type must use some data structure – made up
of built-in python types – to store values.

* Typically, several alternative data structures can
implement an ADT.

* Consider:
- Ease of implementation
- Memory requirements
- Computational complexity of operations

Example: mapping

* A mapping (a.k.a. dictionary) stores key–value
pairs; each key stored in the mapping has
exactly one value. Keys do not have to be
consecutive integers.

* Examples of use:
- Storing a look-up index (e.g., a contact list).
- Organising data with “complex” labels (like a

multi-dimensional table).
- Storing solutions to subproblems in a dynamic

programming algorithm.

* Interface – what you can do with a mapping:
- Create new, empty mapping.
- Store a (new) value with a key.
- Is a given key stored in the mapping?
- Look up the value stored for a given key.
- Remove key.
- Enumerate keys, values, or key–value pairs.

* What can be used as a key?
- What can happen if keys are mutable?
- Do keys have to be comparable?

* Implementations of mapping:
- Store key–value pairs in a list.
- All operations are linear time.

- Store key–value pairs in a list, sorted by keys.
- Key look-up is O(log n) time, but adding a

new key takes linear time.
- Hashtable (built-in python type dict).
- Insertion and lookup can be done in

amortised constant time.

python’s dict type
* Create a new dictionary:
>>> adict = {}
>>> adict = dict()
>>> adict = { (2015,12) : 33.4,

(2016,6) : 148.3 }
>>> adict = { "be" : 2, "can" : 3 }

- Dictionary (and set!) literals are written with
curly brackets ({ and }).

- The literal can contain key : value pairs,
which become the initial contents.

* Key exists in dictionary:
>>> key in adict

* Look-up and storing values:
>>> adict = { "be" : 2, "can" : 1 }
>>> adict["can"]
1
>>> adict["now"] = 2
>>> adict[3] = "yet"

- To index a value, write the key in square
brackets after the dictionary expression.

- Assigning to a dictionary index expression
adds or updates the key.

* dict is a mutable type.
- Like lists, arrays.

* Keys must be immutable (?).
>>> alist = [1,0]
>>> adict = { alist : 2 }
TypeError: unhashable type: ’list’

* A dictionary can contain a mix of key types.
* Stored values can be of any type.

* Removing keys:
- del adict[key]

Removes key from adict.
- adict.pop(key)

Removes key from adict and returns the
associated value.

- adict.popitem()
Removes an arbitrary (key, value) pair
and returns it.

* del and pop cause a runtime error if key is not
in dictionary; popitem if it is empty.

Iteration over dictionaries

* adict.keys(), adict.values(), and
adict.items() return views of the keys,
values and key–value pairs.

* Views are iterable, but not sequences.
for item in adict.items():

the key = item[0]
the value = item[1]
print(the key, ’:’, the value)

Programming problem(s)

* Counting frequency of items:
- words in a file (or web page);
- (combinations of) values in a data table.

* Building a Markov model (over text, for
example).

* Cross-referencing data tables with common
keys.

Sets
* A set is an unordered collection of (immutable)

values without duplicates.
* Like a dictionary with only keys (no values).

* What you can do with a set:
- Create a new set (empty or from an iterable).
- Add or remove values.
- Is a given element in the set? (membership).
- Mathematical operators: union, intersection,

difference (note: not complement!).
- Enumerate values.

python’s set type
* Set literals are written with { .. }, but with

elements only, not key–value pairs:
>>> aset = { 1, ’c’, (2.5, ’b’) }

* { } creates an empty dictionary, not a set!
* A set can be created from any iterable:
>>> aset = set("AGATGATT")
>>> aset
{’T’, ’A’, ’G’}

- No duplicate elements in the set.
- No order of elements in the set.

Set operators
elem in aset membership (e ∈ A)
aset.issubset(bset) subset (A ⊆ B)
aset | bset union (A ∪ B)
aset & bset intersection (A ∩ B)
aset - bset difference (A \ B, A− B)
aset ˆ bset symmetric difference

* Set operators return a new result set, and do
not modify the operands.

* Also exist as methods (aset.union(bset),
aset.intersection(bset), etc).

Copying
* Dictionaries and sets are mutable objects.
* Like lists, dictionaries and sets store references

to values.
* dict.copy() and set.copy() create a

shallow copy of the dictionary or set.
- New dictionary / set, but containing references

to the same values.
- Dictionary keys and set elements are

immutable, so shared references do not
matter.

- Values stored in a dictionary can be mutable.

adict = {1:[0],2:[1]}
bdict = adict
cdict = adict.copy()
bdict[1] = [2]
cdict[1] = [0, 0]
adict[2].append(1)

adict = {1:[0],2:[1]}
bdict = adict
cdict = adict.copy()
bdict[1] = [2]
cdict[1] = [0, 0]
adict[2].append(1)

Summary

* Creating and using abstract data types helps
structure larger programs, making them easier
to write, debug, read and maintain.

* Several ways to implement ADTs in python:
- Function interface; and
- data structures using built-in python types.
- Defining classes (not covered in this course).

Extra example: Sudoku
3 1

3 1
4

1 2 4

1 3 1
3 1

4
1 2 4

2 3 1
3 1

4
1 2 4

3 3 1
3 1

4
1 2 4

4 3 1
3 1

4
1 2 4

· · · · · ·
2 1 3 1
3 1

4
1 2 4

2 2 3 1
3 1

4
1 2 4

2 3 3 1
3 1

4
1 2 4

2 4 3 1
3 1

4
1 2 4

Extra example: Networks

* A network (or undirected
graph) consists of nodes;
some pairs of nodes are
connected by links.

* Can represent physical
structure (e.g., a power
network), a social network,
logical relationships (e.g.,
synonymy).

* Interface for the Network ADT:
- Create a new network
- An empty network, or with a given

number/set of nodes.
- Add or remove a node.
- Add or remove a link between a pair of nodes.
- Modifies the network (no return value).

- Are a pair of nodes connected? (have a link)
- Enumerate the nodes connected to a given

node (it’s neighbours).

Implementations of ADT network

* Store whether there is a link (True/False) for
each pair of nodes in a list-of-lists or 2-d array.
- Uses O(#nodes2) memory.
- Add/remove/check links in constant time.
- Collecting neighbours takes linear time.
- Insert or remove node?

* Store list or set of neighbours for each node.
- Uses O(#links) memory.
- #links is at most #nodes2, can be much less.

- Add/remove/check links:
- (amortised) constant time using python’s
set type;

- linear time using (unordered) lists.
- Neighbour sets available in constant time

(linear to copy).
- Insert or remove node?

