
COMP1730/COMP6730
Programming for Scientists

Algorithm and problem
complexity

Algorithm complexity
* The time (memory) consumed by an algorithm:
- Counting “elementary operations” (not 𝜇s).
- Expressed as a function of the size of its

arguments.
- In the worst case.

* Complexity describes scaling behaviour: How
much does runtime grow if the size of the
arguments grow by a certain factor?
- Understanding algorithm complexity is

important when (but only when) dealing with
large problems.

Big-O notation

* O(f (n)) means
roughly “a function
that grows at the rate
of f (n), for large
enough n”.

* For example,
- n2 + 2n is O(n2)
- 100n is O(n)
- 1012 is O(1). (Image by Lexing Xie)

Example

* Find the greatest element ≤ x in an unsorted
sequence of n elements. (For simplicity, assume
some element ≤ x is in the sequence.)

* Two approaches:
a) Search through the sequence; or
b) First sort the sequence, then find the greatest

element ≤ x in a sorted sequence.

Searching an unsorted sequence

def unsorted find(x, ulist):
best = min(ulist)
for elem in ulist:

if elem == x:
return elem

elif elem <= x:
if elem > best:

best = elem
return best

Analysis
* Elementary operation: comparison.
- Can be arbitrarily complex.

* If we’re lucky, ulist[0] == x.
* Worst case?
- ulist = [0, 1, 2, ..., x - 1]

- Compare each element with x and current
value of best

* What about min(ulist)?

* f (n) = 2n, so O(n)

Measured runtime

Searching a sorted sequence
def sorted find(x, slist):

if slist[-1] <= x:
return slist[-1]

lower = 0
upper = len(slist) - 1
while (upper - lower) > 1:

middle = (lower + upper) // 2
if slist[middle] <= x:

lower = middle
else:

upper = middle
return slist[lower]

Analysis

* Loop invariant: slist[lower] <= x and
x < slist[upper].

* How many iterations of the loop?
- Initially, upper - lower = n − 1.
- The difference is halved in every iteration.
- Can halve it at most log2(n) times before it

becomes 1.
* f (n) = log2(n) + 1, so O(log(n)).

Measured runtime

Problem complexity

* The complexity of a problem is the time
(memory) that any algorithm must use, in the
worst case, to solve the problem, as a function
of the size of the arguments.

* The hierarchy theorem: For any computable
function f (n) there is a problem that requires
time greater than f (n). (Analogous result for
memory.)

How fast can you sort?

* Any sorting algorithm that uses only pair-wise
comparisons needs n log(n) comparisons in the
worst case.

1,2,3
1,3,2
2,1,3
2,3,1
3,1,2
3,2,1 n!

log2(n!)

* log2(n!) ≥ n log(n) for large enough n.

Measured runtime (list.sort)

Points of comparison

* Algorithm (a): O(n)
* Algorithm (b): n log(n) + log(n) = O(n log(n))

n = 64k n = 128k n = 512k

Unsorted
find

0.013 s 0.026 s 0.108 s

Sorted find 0.000017s 0.000018s 0.00002 s

Sorting 0.07 s 0.18 s

Rate of growth

* Algorithm uses T (n) time on input of size n.
* If we double the size of the input, by what factor

does the runtime increase?

T
(2

n)
/2

T
(n
)

Caution

* “Premature optimisation is the root of all evil
in programming.”

– C.A.R. Hoare

* Remember: Scaling behaviour becomes
important when (and only when) problems
become large, or when they need to be solved a
many times.

NP-Completeness

Example

* The subset sum problem: Given n integers
w1, . . . ,wn, is there a subset of them that sums
to exactly C?

(Also known as the “(exact) knapsack problem”:

⇒

w0 = 5 w1 = 2 w2 = 9 w3 = 1 C = 16.)

def subset sum(w, C):
if len(w) == 0:

return C == 0
including w[0]
if w[0] <= C:

if subset sum(w[1:], C - w[0]):
return True

excluding w[0]
if subset sum(w[1:], C):

return True
return False

Analysis

* Count recursive function calls (no loops, so
every call does a constant max amount of work).

* Assume argument size (n) is number of weights.
* Worst case?
- If the answer is False and C is less than but

close to
∑︀

i wi , almost every call makes two
recursive calls.

* f (n + 1) = 2f (n), f (0) = 1 means that f (n) = 2n.

Finding vs. checking an answer

* Sorting a list vs. O(n log(n))
checking if it’s already sorted O(n)

* Finding a subset of w1, . . . ,wn O(2n)
that sums to C vs.
checking if a sum is equal to C O(n)

NP-complete problems

* A problem is in NP iff there is an answer-
checking algorithm that runs in polynomial time
(O(nc), c constant).

* NP stands for Non-deterministic Polynomial
time.

* A problem is NP-complete if it’s in NP and at
least as hard as every other problem in NP.

* We think there is no polynomial time algorithm
for solving NP-complete problems, but we don’t
know.

There are many NP-complete
problems...

* Most populous intractable problem class.
- Solving a system of integer linear equations.
- The Knapsack problem.

* http://www.nada.kth.se/˜viggo/
wwwcompendium/wwwcompendium.html lists
over 700 NP-complete optimisation problems.

http://www.nada.kth.se/~viggo/wwwcompendium/wwwcompendium.html
http://www.nada.kth.se/~viggo/wwwcompendium/wwwcompendium.html

Why Complexity is (Sometimes)
a Good Thing

Cryptographic Characters

Alice

Encrypt

K se
cre

t
Mes

sa
ge

Bob

Decrypt
K

secret
Message

Ciphertext

Eve

* Eve can intercept the ciphertext, but without
knowing Ksecret can’t read the message.

* Alice and Bob must agree on Ksecret.

Public Key Cryptography

Alice

Encrypt

K pu
bli

c
Mes

sa
ge

Bob

Decrypt
K

private
Message

K
pu

bl
ic

Ciphertext

Eve

* Kpublic can only be used to encrypt.
* Decrypting with Kprivate is easy, but decrypting

without knowing Kprivate is (NP-)hard.

Example: Proof of Identity
* Alice is chatting with “Bob” on-line, but wants to

be sure it’s really Bob.

1. Alice picks a random number N and sends
C =Encrypt(Kpublic,N) to “Bob”.

2. Bob quickly computes N =Decrypt(Kprivate,C)
and sends N back to Alice.

Repeat 1–2 many times to make sure “Bob”
didn’t make a lucky guess.
Succeeding every time proves he knows Kprivate,
which we assume only Bob does.

