

COMP1730/COMP6730 Programming for Scientists

Algorithm and problem complexity

Algorithm complexity

- * The time (memory) consumed by an algorithm:
 - Counting "elementary operations" (not μ s).
 - Expressed as a function of the size of its arguments.
 - In the worst case.
- Complexity describes scaling behaviour: How much does runtime grow if the size of the arguments grow by a certain factor?
 - Understanding algorithm complexity is important when (but only when) dealing with large problems.

Big-O notation

- O(f(n)) means roughly "a function that grows at the rate of f(n), for large enough n".
- * For example,
 - $n^2 + 2n$ is $O(n^2)$
 - 100n is O(n)
 10¹² is O(1).

(Image by Lexing Xie)

Example

- ★ Find the greatest element ≤ x in an unsorted sequence of n elements. (For simplicity, assume some element ≤ x is in the sequence.)
- * Two approaches:
 - a) Search through the sequence; or
 - **b)** First sort the sequence, then find the greatest element $\leq x$ in a *sorted* sequence.

Searching an unsorted sequence

```
def unsorted_find(x, ulist):
    best = min(ulist)
    for elem in ulist:
        if elem == x:
            return elem
        elif elem <= x:
            if elem > best:
                 best = elem
    return best
```


Analysis

- * Elementary operation: comparison.
 - Can be arbitrarily complex.
- * If we're lucky, ulist[0] == x.
- * Worst case?
 - ulist = $[0, 1, 2, \ldots, x 1]$
 - Compare each element with x and current value of best
- * What about min(ulist)?
- ★ f(n) = 2n, so O(n)


```
Searching a sorted sequence
 def sorted_find(x, slist):
     if slist[-1] \leq x:
         return slist[-1]
     lower = 0
     upper = len(slist) - 1
     while (upper - lower) > 1:
         middle = (lower + upper) // 2
         if slist[middle] <= x:
              lower = middle
         else:
             upper = middle
     return slist[lower]
```


Analysis

- * Loop invariant: slist[lower] <= x and x < slist[upper].</pre>
- * How many iterations of the loop?
 - Initially, upper lower = n 1.
 - The difference is halved in every iteration.
 - Can halve it at most log₂(n) times before it becomes 1.
- * $f(n) = \log_2(n) + 1$, so $O(\log(n))$.

Measured runtime

Problem complexity

- The complexity of a problem is the time (memory) that any algorithm must use, in the worst case, to solve the problem, as a function of the size of the arguments.
- * The hierarchy theorem: For any computable function f(n) there is a problem that requires time greater than f(n). (Analogous result for memory.)

How fast can you sort?

 Any sorting algorithm that uses only pair-wise comparisons needs n log(n) comparisons in the worst case.

* $\log_2(n!) \ge n \log(n)$ for large enough *n*.

Points of comparison

- * Algorithm (a): O(n)
- * Algorithm (b): $n \log(n) + \log(n) = O(n \log(n))$

	<i>n</i> = 64k		<i>n</i> = 128k		<i>n</i> = 512 <i>k</i>	
Unsorted find	0.013	S	0.026	S	0.108	S
Sorted find	0.0000	17s	0.0000	18s	0.00002	S
Sorting	0.07	S	0.18	S		

Rate of growth

- * Algorithm uses T(n) time on input of size n.
- If we double the size of the input, by what factor does the runtime increase?

Caution

- * "Premature optimisation is the root of all evil in programming."
 - C.A.R. Hoare
- Remember: Scaling behaviour becomes important when (and *only* when) problems become *large*, or when they need to be solved a *many times*.

NP-Completeness

Example

★ The subset sum problem: Given *n* integers *w*₁,..., *w_n*, is there a subset of them that sums to exactly *C*?

(Also known as the "(exact) knapsack problem":


```
def subset_sum(w, C):
    if len(w) == 0:
        return C == 0
    # including w[0]
    if w[0] <= C:
        if subset_sum(w[1:], C - w[0]):
            return True
    # excluding w[0]
    if subset_sum(w[1:], C):
        return True
    return False
```


Analysis

- Count recursive function calls (no loops, so every call does a constant max amount of work).
- * Assume argument size (n) is number of weights.
- * Worst case?
 - If the answer is False and C is less than but close to $\sum_i w_i$, almost every call makes two recursive calls.

* f(n+1) = 2f(n), f(0) = 1 means that $f(n) = 2^{n}$.

Finding vs. checking an answer

 Sorting a list vs. checking if it's already sorted $O(n\log(n))$ O(n)

* Finding a subset of w_1, \ldots, w_n $O(2^n)$ that sums to *C* vs. checking if a sum is equal to *C* O(n)

NP-complete problems

- * A problem is **in NP** iff there is an answerchecking algorithm that runs in polynomial time $(O(n^c), c \text{ constant}).$
- NP stands for Non-deterministic Polynomial time.
- * A problem is **NP-complete** if it's in NP and *at* least as hard as every other problem in NP.
- We think there is no polynomial time algorithm for solving NP-complete problems, but we don't know.

There are many NP-complete problems...

- * Most populous intractable problem class.
 - Solving a system of *integer* linear equations.The Knapsack problem.
- * http://www.nada.kth.se/~viggo/
 wwwcompendium/wwwcompendium.html lists
 over 700 NP-complete optimisation problems.

Why Complexity is (Sometimes) a Good Thing

Cryptographic Characters

- * Eve can intercept the ciphertext, but without knowing K_{secret} can't read the message.
- * Alice and Bob must agree on K_{secret} .

Public Key Cryptography

- \star K_{public} can only be used to encrypt.
- Decrypting with K_{private} is easy, but decrypting without knowing K_{private} is (NP-)hard.

Example: Proof of Identity

- Alice is chatting with "Bob" on-line, but wants to be sure it's really Bob.
 - **1.** Alice picks a random number *N* and sends $C = \text{Encrypt}(K_{\text{public}}, N)$ to "Bob".
 - **2.** Bob *quickly* computes $N = \text{Decrypt}(K_{\text{private}}, C)$ and sends *N* back to Alice.

Repeat **1–2** many times to make sure "Bob" didn't make a lucky guess.

Succeeding every time proves he knows K_{private} , which we assume only Bob does.