COMP1730/COMP6730

Programming for Scientists

The Computer

|;___‘:| Ausitéﬁgﬁm

The Computer

* A computer
combines
repeated function
execution and
memory.

* |n a programmable computer, the function is
selected by program instructions.

Turing’s Machine

The Turing Machine (TM)

* A simple, abstract model of a
(universal) computer.

» Capable of executing any program that can be
implemented on any known digital computer
hardware.

* Computable by a Turing machine is widely

accepted to be the same as computable, full
stop (Church—Turing thesis).

*

A finite state.

An infinite tape of
discrete cells marked
with letters from a
fixed, finite alphabet.
A current position on
the tape.

Next state, letter written (at current position) and

movement (left, right) is a finite function of the
current state and the letter read.

http://aturingmachine.com/

http://aturingmachine.com/

Australian
National

University

by Jeroen van den Bos
and Davy Landman
(http://www.legoturingmachine.org/)

http://legoturingmachine.org/

http://legoturingmachine.org/

—| Australian

lational

Execution cycle

1. Read the symbol (X) on the tape at current
position (P).
2. Compute the transition function:
- the next state (Q);
- the new symbol (Y); and
- the movement (A € {—1,0,+1}),
as a function of the current state (Q) and X.
3. Write Y at position P on the tape (replacing X).
4. Update the positionto P = P + A.
5. Update the current state to Q'.
* ...and repeat.

* A TM is completely defined by its transition
function.

» Possible inputs to the transition function are

finite — can be written as a lookup table.

T(Q. X) =
O 0 1
A(B.O,-1)(A0+1)[(AT,+1)
Bl (Z,0,0) [(B,1,—1)(A,0,+1)

V4

The universal Turing Machine

» Consequently, the transition function of a TM
can be encoded as a string of letters (even in
binary).

*» We can design a TM, U, that reads the
encoding of any other TM, M, and “simulates
the execution of M.

= U is a programmable computer.

kb

Digital Circuits

Reminder: Binary numbers

* A binary number is simply a number in base 2.
- Also negative and fractional numbers.

* Electronic computers work with
binary representation of data.

- A single binary digit (bit) is 111

represented by the presence or 0101,
absence of current in a circuit. +01115
- 8 bits make a byte. - 1100,

- Fixed-width numbers (e.g.,
32-bit, 64-bit) are often called
(short or long) words.

tional
University

Combinatorial circuits

* A circuit computes binary
outputs as a function of
binary inputs.

- Primitives (“gates”)
implement elementary
functions.

- Wires carry values.

* A circuit can be an element of
a larger circuit (abstraction).

Elementary binary functions

AND (1 7) OR (M) NOT (=)
Xy|x-y Xyx+y X|X

00| O 00l O 01

01/ O 01| 1 110

10 O 10 1

11] 1 11 1

*» Any binary function can be written as a
combination of AND, OR and NOT.

* Other primitives (XOR, NAND, NOR) are also
used.

Realisations of circuits

* Mechanical (1800’s idea,
only used in toys)

* Electro-mechanical relays
and valves (1930’s) ,

* Transistors (1950’s), "
integrated circuits (1960’s),
CMOS (1990’s). e

* Performance: size (density),
speed, power/heat, cost. T

{

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empiri

cal regularity that the number of transistors on integrated circuits doubles approximately every two years
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products - are
linked to Moore's law.

50,000,000,000

o R
10,000,000,000 8 goﬁg‘sox,xi‘f Nipdragon BoSCXB180
5,000,000,000 X iSicon i 90 Aol 12 Biric
; e
entim b Prsir 8 o Quacrcon. cp
1,000,000,000 p‘fmf: QY“@. :‘ Onoplo A7 oacors A mo
500,000,000 s o ',‘w‘,,u 3
s S gi.j“ SN
100,000,000 AMD K8 ® % entiom 4 Prescont odar
e e S o QARM Cortex-A9
8 i M%ﬁ, et 1l Cappermine
£ 10,000,000 e ¥t
@ 5,000,000 o sl
2 boting Bre
=) g
11000000 sy Q000
500,000 TEmte nefiroo
gl GARM
100,000 Intl 80266 e 2
50,000 @intel 80185 b
Intol 8086 @ Intel 8088 o, 22 e
Motorola 6 0
10000 o mezg VB
® e 4202 S soss o
5,000 115008 25080
° Ommn,m
8, V%
1,000
S AV > Ao /\‘b N
O RGN

Data source: Wikipedia (ttps://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.

| Australian
|—"“"‘-‘—“| ional

Memory circuits
* A closed (feedback)

.1—@%0 circuit can remember a

value.
e * Problems with feedback
(e.g., oscillation, races).
___o.. * Aclockisaregular
synchronising signal.

gk — LTLIT LT M
P o rot
- o———@ Data S L
esef | I

H | '
a — l1—11 T
b P [

\/

\/

\/

Addressable memory (RAM)

o[10 20 20 40
Address a1 31 =
s 8|12 223242| D
cl13 223343
sel Id _clr
£ J
R/W[@) > Data Out
1111111 » @1000001|
Data In Bus

*» Can store many m-bit words but only
(read/write) one word at a time.

— The address determines which word.

nnnnnnnnnnn

rrrrrrrrrr

* Like a very large array of fixed-width integers.

von Neumann’s Machine

| Australian
|—"“"‘-‘—“| ional

von Neumann architecture

* Architecture of the Cémra_l Pm(?essin-g Unit (cpp)
modern digital s e
computer. st |

*» CPU implements a | |
fixed (small) set of i
operations. 2

*» Program and data are stored in memory.

= The CPU repeatedly reads and executes
instructions from memory.

Execution cycle

1. CPU reads next instruction from memory
address given by the program counter (PC).
2. The instruction details:
- what operation to do (+, —, x, <, copy, ...)
- what operands to do it on (CPU register,
memory, constant)
- where to store the result.
* |f instruction is a (conditional) jump, set PC to
target address, else to PC + instruction size.

* ...and repeat.

stralian
National

University

Example (x86 instruction set)

Instruction
Byte 1 Byte 2—4

00 Op. 1 \ Op. 2 \

01 R/M 8 R8 |Add

02 |R/M16/32|R 16/32|Add

03 R8 R/M 8 |Add

28 | RM8 | R8 |Subtract

74 | offset (8) - Jump if last
= was true

E9 | offset (16) | Jump

R/M 16
00 |memory at BX+SI
01 memory at BX+DI
08 |memory at
BX+Dl+offset (8)
CO |AXregister
C8

CX register

Registers, memory and cache

= The CPU has a “working” memory: registers.
- Registers are limited (word-sized) and few
(typically a few 10’s) but fast (run at the CPU’s

clock speed).

* Main memory is high-density (maybe 108 times
larger) but slower than the CPU (often factor 10

or more).

*= A cache is a smaller, high-speed memory
between CPU and main memory.
- Caching is transparent to the program.

The bus

* The bus transfers data between components:
CPU(s), FPU, memory, peripherals (hard drive,
graphics, network).

- Components can run at different clock speeds.
- Bottle neck: only one component can write to
the bus at any time.

* Speed-ups:

- Direct memory—peripherals paths.

— Out-of-order and speculative execution: CPU
executes independent or (possible) future
instructions while waiting.

Australian
National

University

~
©
)
°
S w-
o
3
o
£
<
. *
. .-
) [
7 - P —
"""" +--------------#——-—-————--—--“t’-
T T T T T
1073 104 1075 1076 1077 1078

array size

|;__;| Ausigﬁa[ﬁm

Assembler

* Programming languages
that do not have (much of)

Xor ax, ax
pop bx

an abstraction from the way mov cx, [bx]

that the CPU works are add bx, 4

usually called “assembler”. @loop:

A blv | add ax, [bx]
= Assembly languages _ add bx, 4

typically provide mnemonic sub cx, 1

names for instructions and inz @loop

operands, address labels, push ax

ret

and other conveniences.

When and why does this matter?

* In certain cases, for performance.
- “hand-written assembler is fast” is mostly a
myth.
- But some effects (cache, bus, etc) matter in
some situations.
* Interfacing with hardware (e.g., GPU
programming, embedded computing devices).
*» Understanding (writing?) malicious code, and
how to guard against it.

