
COMP1730/COMP6730
Programming for Scientists

The Computer

The Computer

* A computer
combines
repeated function
execution and
memory.

* In a programmable computer, the function is
selected by program instructions.

Turing’s Machine

The Turing Machine (TM)

* A simple, abstract model of a
(universal) computer.

* Capable of executing any program that can be
implemented on any known digital computer
hardware.

* Computable by a Turing machine is widely
accepted to be the same as computable, full
stop (Church–Turing thesis).

* A finite state.
* An infinite tape of

discrete cells marked
with letters from a
fixed, finite alphabet.

* A current position on
the tape.

* Next state, letter written (at current position) and
movement (left, right) is a finite function of the
current state and the letter read.

http://aturingmachine.com/

http://aturingmachine.com/

http://legoturingmachine.org/

http://legoturingmachine.org/

Execution cycle
1. Read the symbol (X) on the tape at current

position (P).
2. Compute the transition function:
- the next state (Q′);
- the new symbol (Y); and
- the movement (∆ ∈ {−1,0,+1}),
as a function of the current state (Q) and X .

3. Write Y at position P on the tape (replacing X).
4. Update the position to P ′ = P + ∆.
5. Update the current state to Q′.
* ...and repeat.

* A TM is completely defined by its transition
function.

* Possible inputs to the transition function are
finite – can be written as a lookup table.

T (Q,X) =
� 0 1

A (B,�,−1) (A,0,+1) (A,1,+1)
B (Z ,�,0) (B,1,−1) (A,0,+1)
Z

The universal Turing Machine

* Consequently, the transition function of a TM
can be encoded as a string of letters (even in
binary).

* We can design a TM, U, that reads the
encoding of any other TM, M, and “simulates”
the execution of M.

* U is a programmable computer.

Digital Circuits

Reminder: Binary numbers
* A binary number is simply a number in base 2.
- Also negative and fractional numbers.

* Electronic computers work with
binary representation of data.
- A single binary digit (bit) is

represented by the presence or
absence of current in a circuit.

- 8 bits make a byte.
- Fixed-width numbers (e.g.,

32-bit, 64-bit) are often called
(short or long) words.

1 1 1

01012
+ 01112

11002

Combinatorial circuits

* A circuit computes binary
outputs as a function of
binary inputs.
- Primitives (“gates”)

implement elementary
functions.

- Wires carry values.
* A circuit can be an element of

a larger circuit (abstraction).

Elementary binary functions
AND ()
x y x · y
0 0 0
0 1 0
1 0 0
1 1 1

OR ()
x y x + y
0 0 0
0 1 1
1 0 1
1 1 1

NOT ()
x x
0 1
1 0

* Any binary function can be written as a
combination of AND, OR and NOT.

* Other primitives (XOR, NAND, NOR) are also
used.

Realisations of circuits

* Mechanical (1800’s idea,
only used in toys)

* Electro-mechanical relays
and valves (1930’s)

* Transistors (1950’s),
integrated circuits (1960’s),
CMOS (1990’s).

* Performance: size (density),
speed, power/heat, cost.

Memory circuits
* A closed (feedback)

circuit can remember a
value.

* Problems with feedback
(e.g., oscillation, races).

* A clock is a regular
synchronising signal.

Addressable memory (RAM)

* Can store many m-bit words but only access
(read/write) one word at a time.
- The address determines which word.

* Like a very large array of fixed-width integers.

von Neumann’s Machine

von Neumann architecture

* Architecture of the
modern digital
computer.

* CPU implements a
fixed (small) set of
operations.

* Program and data are stored in memory.
* The CPU repeatedly reads and executes

instructions from memory.

Execution cycle
1. CPU reads next instruction from memory

address given by the program counter (PC).
2. The instruction details:
- what operation to do (+, −, ×, ≤, copy, ...)
- what operands to do it on (CPU register,

memory, constant)
- where to store the result.

* If instruction is a (conditional) jump, set PC to
target address, else to PC + instruction size.

* ...and repeat.

Example (x86 instruction set)
Instruction

Byte 1 Byte 2–4
00 Op. 1 Op. 2
01 R/M 8 R 8 Add
02 R/M 16/32 R 16/32 Add
03 R 8 R/M 8 Add

...
28 R/M 8 R 8 Subtract

...
74 offset (8) – Jump if last

= was true
...

E9 offset (16) Jump
...

R/M 16
00 memory at BX+SI
01 memory at BX+DI

...
08 memory at

BX+DI+offset (8)
...

C0 AX register
C8 CX register

...

Registers, memory and cache
* The CPU has a “working” memory: registers.
- Registers are limited (word-sized) and few

(typically a few 10’s) but fast (run at the CPU’s
clock speed).

* Main memory is high-density (maybe 108 times
larger) but slower than the CPU (often factor 10
or more).

* A cache is a smaller, high-speed memory
between CPU and main memory.
- Caching is transparent to the program.

The bus
* The bus transfers data between components:

CPU(s), FPU, memory, peripherals (hard drive,
graphics, network).
- Components can run at different clock speeds.
- Bottle neck: only one component can write to

the bus at any time.
* Speed-ups:
- Direct memory–peripherals paths.
- Out-of-order and speculative execution: CPU

executes independent or (possible) future
instructions while waiting.

3
4

5
6

7

array size

ti
m

e
 (

s
e
c
o
n
d
s
)

++++++
++++

++
++
+
+++
++

+++
+++++++

++++++++++++++++++++++++++++++

++++++++++
++++++++
+
+ ++++++++++

+

++++++
+++

+

+++

+

+++++

++++++++++

10^3 10^4 10^5 10^6 10^7 10^8

Assembler

* Programming languages
that do not have (much of)
an abstraction from the way
that the CPU works are
usually called “assembler”.

* Assembly languages
typically provide mnemonic
names for instructions and
operands, address labels,
and other conveniences.

xor ax, ax
pop bx
mov cx, [bx]
add bx, 4

@loop:
add ax, [bx]
add bx, 4
sub cx, 1
jnz @loop
push ax
ret

When and why does this matter?

* In certain cases, for performance.
- “hand-written assembler is fast” is mostly a

myth.
- But some effects (cache, bus, etc) matter in

some situations.
* Interfacing with hardware (e.g., GPU

programming, embedded computing devices).
* Understanding (writing?) malicious code, and

how to guard against it.

