
COMP1730/COMP6730
Programming for Scientists

Control, part 3: Dynamic
programming



Outline

* Dynamic programming.
* (DNA) sequence alignment.



Dynamic programming



Recursion or iteration?

* Examples of problems that could be solved both
with recursion and with iteration:
- Counting boxes in a stack.
- Solving an equation (the interval-halving

algorithm).
* Examples pf problems that we have only seen

recursive solutions for:
- Counting selections (“n choose k ”).
- The subset sum problem.



Example: Counting selections
* Compute the number of ways to choose k

elements from a set of n, C(n, k).
2 from {�,4,©}

2 from {4,©}: 1

� out

1 from {4,©}

1 from {©}: 1

4 out

0 from {©}: 1

4 in

� in



* Simple recursive formulation:

C(n, k) = C(n − 1, k) + C(n − 1, k − 1)
C(n,0) = 1
C(n,n) = 1

* Simple recursive implementation:
def choices(n, k):

if k == n or k == 0:
return 1

else:
return choices(n - 1, k) + \

choices(n - 1, k - 1)

* How to implement with iteration?



* Recursive calls by choices(5, 3):

(5,3)

(4,3)

(3,3) (3,2)

(2,2) (2,1)

(1,1) (1,0)

(4,2)

(3,2)

(2,2) (2,1)

(1,1) (1,0)

(3,1)

(2,1)

(1,1) (1,0)

(2,0)

* Note repeated work.



* The idea of dynamic programming is to store
answers to (recursively defined) subproblems,
to avoid computing them repeatedly.
- Trade memory for computation time.

* By computing subproblem solutions “from the
bottom up”, we can also transform a recursive
algorithm into an iterative one:
- solve the base cases first;
- then, repeatedly, solve problems whose

subproblems are already solved;
- until the whole problem is solved.

* Need a way to index subproblems.



* Array of subproblems:

(5,0)(4,0)(3,0)(2,0)(1,0)(0,0)

(5,1)(4,1)(3,1)(2,1)(1,1)

(5,2)(4,2)(3,2)(2,2)

(5,3)(4,3)(3,3)

n

k



* With base cases solved:

(5,0)
= 1

(4,0)
= 1

(3,0)
= 1

(2,0)
= 1

(1,0)
= 1

(0,0)
= 1

(5,1)(4,1)(3,1)(2,1)(1,1)
= 1

(5,2)(4,2)(3,2)(2,2)
= 1

(5,3)(4,3)(3,3)
= 1

n

k



* Complete:

(5,0)
= 1

(4,0)
= 1

(3,0)
= 1

(2,0)
= 1

(1,0)
= 1

(0,0)
= 1

(5,1)
= 5

(4,1)
= 4

(3,1)
= 3

(2,1)
= 2

(1,1)
= 1

(5,2)
= 10

(4,2)
= 6

(3,2)
= 3

(2,2)
= 1

(5,3)
= 10

(4,3)
= 4

(3,3)
= 1

n

k



(DNA) sequence alignment



BRCA 1 gene (BReast CAncer)
CTTAGCGGTAGCCCCTTGGTTTCCGTGGCAACGGAAAAGCGCGGGAATTACAGATAAATTAAAACTGCGACTGCGCGGCGTGAGCTCGC
TGAGACTTCCTGGACGGGGGACAGGCTGTGGGGTTTCTCAGATAACTGGGCCCCTGCGCTCAGGAGGCCTTCACCCTCTGCTCTGGTTC
ATTGGAACAGAAAGAAATGGATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAATGTCATTAATGCTATGCAGAAAATCTTAGAGTGTC
CCATCTGTCTGGAGTTGATCAAGGAACCTGTCTCCACAAAGTGTGACCACATATTTTGCAAATTTTGCATGCTGAAACTTCTCAACCAG
AAGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTGA
AGAGCTATTGAAAATCATTTGTGCTTTTCAGCTTGACACAGGTTTGGAGTATGCAAACAGCTATAATTTTGCAAAAAAGGAAAATAACT
CTCCTGAACATCTAAAAGATGAAGTTTCTATCATCCAAAGTATGGGCTACAGAAACCGTGCCAAAAGACTTCTACAGAGTGAACCCGAA
AATCCTTCCTTGGAAACCAGTCTCAGTGTCCAACTCTCTAACCTTGGAACTGTGAGAACTCTGAGGACAAAGCAGCGGATACAACCTCA
AAAGACGTCTGTCTACATTGAATTGGGATCTGATTCTTCTGAAGATACCGTTAATAAGGCAACTTATTGCAGTGTGGGAGATCAAGAAT
TGTTACAAATCACCCCTCAAGGAACCAGGGATGAAATCAGTTTGGATTCTGCAAAAAAGGCTGCTTGTGAATTTTCTGAGACGGATGTA
ACAAATACTGAACATCATCAACCCAGTAATAATGATTTGAACACCACTGAGAAGCGTGCAGCTGAGAGGCATCCAGAAAAGTATCAGGG
TGAAGCAGCATCTGGGTGTGAGAGTGAAACAAGCGTCTCTGAAGACTGCTCAGGGCTATCCTCTCAGAGTGACATTTTAACCACTCAGC
AGAGGGATACCATGCAACATAACCTGATAAAGCTCCAGCAGGAAATGGCTGAACTAGAAGCTGTGTTAGAACAGCATGGGAGCCAGCCT
TCTAACAGCTACCCTTCCATCATAAGTGACTCTTCTGCCCTTGAGGACCTGCGAAATCCAGAACAAAGCACATCAGAAAAAGCAGTATT
AACTTCACAGAAAAGTAGTGAATACCCTATAAGCCAGAATCCAGAAGGCCTTTCTGCTGACAAGTTTGAGGTGTCTGCAGATAGTTCTA
CCAGTAAAAATAAAGAACCAGGAGTGGAAAGGTCATCCCCTTCTAAATGCCCATCATTAGATGATAGGTGGTACATGCACAGTTGCTCT
GGGAGTCTTCAGAATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTTGTTGATGTGGAGGAGCAACAGCTGGAAGAGTCTGGGCC
ACACGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATCTAGAGGGAACCCCTTACCTGGAATCTGGAATCAGCCTCTTCTCTGATG
ACCCTGAATCTGATCCTTCTGAAGACAGAGCCCCAGAGTCAGCTCGTGTTGGCAACATACCATCTTCAACCTCTGCATTGAAAGTTCCC
CAATTGAAAGTTGCAGAATCTGCCCAGAGTCCAGCTGCTGCTCATACTACTGATACTGCTGGGTATAATGCAATGGAAGAAAGTGTGAG
CAGGGAGAAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACAAAAGAATGTCCATGGTGGTGTCTGGCCTGACCCCAGAAGAATTTA
TGCTCGTGTACAAGTTTGCCAGAAAACACCACATCACTTTAACTAATCTAATTACTGAAGAGACTACTCATGTTGTTATGAAAACAGAT
GCTGAGTTTGTGTGTGAACGGACACTGAAATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAGTTAGCTATTTCTGGGTGACCCAGTC
TATTAAAGAAAGAAAAATGCTGAATGAG



Biological sequence data
* DNA and RNA.
* Protein amino acid

sequence.
* Arrangement of genes in

chromosome / genome.

* Human DNA is ∼3 billion bp.
* BRCA 1 & 2 genes are ∼80kb (incl. exons).
* Harmful mutations change as few as 2 bases.
* DNA sequencer reads are 100–2k bases.



* Alignment

* Assembly

* Mapping



Edit distance

* Minimum (weighted) number of “edit operations”
needed to transform one sequence into the
other.

* Levenshtein (string edit) distance:
- insert a character (gap in other string);
- delete a character (gap in this string);
- substitute a character.

* Minimum edit equals best sequence alignment.



* distance(GAATTCA, GGATCGA) = 3.
* Edits:

G A A T T C A
(subst. 1 G) ⇒ G G A T T C A

(del 4) ⇒ G G A T C A
(ins 5 G) ⇒ G G A T C G A

* Alignment:

G A A T T C A
G G A T C G A

+1 +1 +1



Recursive formulation

dist(s,’’) = len(s) ∗ wgap

dist(’’, t) = len(t) ∗ wgap

dist(s + x , t + y) =

min


dist(s, t) +

{
0 ifx = y
wsub otherwise

dist(s + x , t) + wgap
dist(s, t + y) + wgap

* In example, wsub = wgap = 1.



def align(s, t):
if len(s) == 0:

return len(t) * w gap
elif len(t) == 0:

return len(s) * w gap
else:

if s[-1] == t[-1]:
d1 = align(s[:-1], t[:-1])

else:
d1 = align(s[:-1], t[:-1]) + w sub

d2 = align(s, t[:-1]) + w gap
d3 = align(s[:-1], t) + w gap
return min(d1, d2, d3)



Iterative formulation

* How to index subproblems?
- Each call aligns two sequence prefixes.
- (i , j): align(s[:i], t[:j]).

* Base cases?
- One sequence is empty (i = 0 or j = 0).

* Update: min of (i − 1, j − 1) (plus subst. weight if
s[i] != t[j]), (i − 1, j) plus gap weight, and
(i , j − 1) plus gap weight.



G C A T A

0 1 2 3 4 5

T

G

C

T

A

1

2

3

4

5

1 2 · · ·

1 2 · · ·

2 1 2 · · ·

· · · 2 · · ·

· · · 2



Summary

* Recursion, iteration and dynamic programming
are all useful algorithm design ideas.

* There is no single “best” idea.
* It is not always easy to know which is the right

one to apply to a given problem.


