
COMP1730/COMP6730
Programming for Scientists

Functions

Lecture outline

* Function definition.
* Function calls & order of evaluation.
* Assignments in functions; local variables.
* Function testing & documentation.

Functions

* In programming, a function is a piece of the
program that is given a name, and can be called
by that name.

* Functions definitions promote abstraction
(“what, not how”) and help break a complex
problem into smaller parts.

* To encapsulate computations on data, functions
have parameters and a return value.

Function definition (reminder)

def change in percent(old, new):
diff = new - old
return (diff / old) * 100

name

suite
4

spaces

* A function definition consists of a name and
suite.

* The extent of the suite is defined by indentation,
which must be the same for all statements in the
suite (standard is 4 spaces).

Function definition

def change in percent(old, new):
diff = new - old
return (diff / old) * 100

parameters

* Function parameters are (variable) names; they
can be used (only) in the function suite.

* Parameters’ values will be set only when the
function is called.

* return is a statement: when executed, it
causes the function call to end, and return the
value of the expression.

Function call
* To call a function, write its name followed by its

arguments in parentheses:

>>> change in percent(483, 530)
-8.867924528301886

* The arguments are expressions.
* Their number should match the parameters.
- Some exceptions; more about this later.

* A function call is an expression: it’s value is the
value returned by the function.

Function Call Execution

Order of evaluation
* The python interpreter always executes

instructions one at a time in sequence; this
includes expression evaluation.

* To evaluate a function call, the interpreter:
- First, evalutes the argument expressions, one

at a time, from left to right.
- Then, executes the function suite with its

parameters assigned the values returned by
the argument expressions.

* Same with operators: first arguments (left to
right), then the operation.

The call stack

* When evaluation of a function call begins, the
current instruction sequence is put “on hold”
while the expression is evaluated.

* When execution of the function suite ends, the
interpreter returns to the next instruction after
where the function was called.

* The “to-do list” of where to come back to after
each current function call is called the stack.

import math

Convert degrees to radians.
def deg to rad(x):

return x * math.pi / 180

Take sin of an angle in degrees.
def sin of deg(x):

x in rad = deg to rad(x)
return math.sin(x in rad)

ans = sin of deg(23)
print(ans)

1 import math

2 def deg to rad(x):

...

3 def sin of deg(x):

...

4 ans=sin of deg(23)

5 x in rad=deg to rad(23)

6 return 23*math.pi/180

7 x in rad=0.4014

8 return math.sin(0.4014)

9 ans = 0.3907

10 print(ans

stack depth

import math

def deg to rad(x):
return x * math.pi / 180

def sin of deg(x):
x in rad = deg to rad(x)
return math.sin(x in rad)

answer = sin of deg(23)

(Image from pythontutor.com)

import math

def deg to rad(x):
return x * math.pi / 180

def sin of deg(x):
x in rad = deg to rad(x)
return math.sin(x in rad)

answer = sin of deg(23)

(Image from pythontutor.com)

import math

def deg to rad(x):
return x * math.pi / 180

def sin of deg(x):
x in rad = deg to rad(x)
return math.sin(x in rad)

answer = sin of deg(23)

(Image from pythontutor.com)

import math

def deg to rad(x):
return x * math.pi / 180

def sin of deg(x):
x in rad = deg to rad(x)
return math.sin(x in rad)

answer = sin of deg(23)

(Image from pythontutor.com)

import math

def deg to rad(x):
return x * math.pi / 180

def sin of deg(x):
x in rad = deg to rad(x)
return math.sin(x in rad)

answer = sin of deg(23)

(Image from pythontutor.com)

Assignments in functions
* Variables assigned in a function (including

parameters) are local to the function.
- Local variables are “separate” – the interpreter

uses a new namespace for each function call.
- Local variables that are not parameters are

undefined before the first assignment in the
function suite.

- Variables with the same name used outside
the function are unchanged after the call.

* The full story is a little more complicated – we’ll
return to it later in the course.

Functions with no return

* If execution of a function suite reaches the end
of the suite without encountering a return
statement, the function call returns the special
value None.
- None is used to indicate “no value”.
- The type of None is NoneType (different from

any other value).
* In interactive mode, the interpreter does not

print the return value of an expression when the
value is None.

Side effects and return values
* An expression evaluates to a value.
* A statement does not return a value, but

executing it causes something to happen, e.g.,
- a number = 2 + 3 : variable a number

becomes associated with the value 5;
- print(2 + 3) : the value 5 is printed.
This is called a side effect.

* We can write functions with or without side
effects, and functions that do or don’t return a
value (other than None).

* Functions with side effects and None return:
- robot.drive right()
- print(...)

* Functions with return value and no side effect:
- math.sin(x)
- change in percent(old, new)

* Functions with side effects and return value?
- Possible.

* Functions with no side effect and None return
value?

Functions of functions

* In python, functions are also values; a function
can be passed as argument to another function.

def gradient(f, x, d):
return (f(x + d) - f(x - d)) / (2*d)

ans = gradient(math.sin, math.pi/4, 0.1)

Testing and Documentation

Function testing
* A function is a logical unit of testing.
- Specify the assumptions (for example, type

and range of argument values);
- Test a variety of cases under the assumptions.

* What are “edge cases”?
- Typical (numeric) examples: values equal

to/less than/greater than zero; very large and
very small values; values of equal and
opposite signs; etc.

* Remember that floating-point numbers have
limited precision; == can fail.

>>> change in percent(1, 2)
100.0
>>> change in percent(2, 1)
-50.0
>>> change in percent(1, 1)
0.0
>>> change in percent(1, -1)
-200.0
>>> change in percent(0, 1)
ZeroDivisionError

The function docstring
def change in percent(old, new):

’’’Return change from old to new, as
a percentage of the old value.
old value must be non-zero.’’’
return ((new - old) / old) * 100

* A docstring is a string literal written as the first
statement inside a function’s suite.

* Acts like a comment, but accessible through the
built-in help system.

* Describe what the function does (if not obvious
from its name), and its limits and assumptions.

