COMP1730/COMP6730
Programming for Scientists

Modules and programs

Lecture outline

* python modules & import
* Commandline interface and scripting

. Dr .
University

Modules

Modules

*» Every python file is a module.
- A module is a sequence of statements.
- Every module has a name.
* When the python shell runs in “script mode”, the
file it's executing becomes the “main module”.
- Its name becomes ' _main__’.
- Its namespace is the global namespace.
* The first time a module is imported, that module
is loaded (executed); it may later be re-loaded.
*» Every loaded module creates a separate
(permanent) namespace.

* When executing import modname, the python
interpreter:
— checks if modname is already loaded;
- if not (or if reloading), it:

- finds the module file (normally modname . py)

- executes the file in a new namespace;

— and stores the module object (roughly,
namespace) in the system dictionary of
loaded modules;

- and then associates modname with the
module object in the current namespace.
* Note: the Spyder IDE reloads all user-defined
modules on (first) import when running a file.

| Australian
|—"“"‘-‘—“| ional

*» The global variable __name__in every module
namespace stores the module name.

* sys.modules is a dictionary of all loaded
modules.

* dir (module) returns a list of names defined in
module’s hamespace

*» dir () lists the current (global) namespace.

Australian
National

: University

>>> __name__

/! _main__’

>>> import sys

>>> len(sys.modules)

>>> sys.modules|[’'math’].__name__

"math’
>>> dir ()
[..., sys]

>>> import math
>>> dir ()
[..., sys, math]

—| Australian

lational
7 University

def some_useful_function (x):

if _name__ == ' _main__":
this part will not execute when
the module is imported
print (some_useful function (0))

*» Code within the if statement will execute when
the module is run, but not when it's imported
(“guarded main”).

* For example, test cases.

The commandline

A commandline (“terminal” or
“shell”) is a text I/O interface
to the computer’s operating
system (OS).

The shell is an interpreter for
a command (programming)
language.

The languages of shells are (more or less)
different, but some aspects are fairly common.

Some concepts from the commandline interface
explain how programs interact with the OS.

(Image from wikipedia)

x Typically, there is a current working directory.

* 0 run a (executable) program, type its name.

- Where the OS searches for programs is
usually configurable.
- Alternatively, enter the full path.

* 0 run a python program (file):
S python3 my_prog.py
- Runs the python shell in “script mode”.

» Can pass arguments (strings) to the program:
$ python3 my prog.py argl "arg two"

* Inputs that the OS provides to the program:
- Alist of commandline arguments (strings).
- A set of environment variables (key—value

pairs, both (byte) strings).
— Open files (or file-like objects) for “standard
input” and “standard output”.

* You can access these within python:

- Sys.argv
- os.environ and os.getenv (var)
- sys.stdin and sys.stdout

*» By default, input (..) reads sys.stdin and
print (...) writesto sys.stdout.

