
COMP1730/COMP6730
Programming for Scientists

Code Quality & Debugging

Announcements
* Marks for Homework 1 available on Wattle. If

you think there is a mistake, pls first talk with
your Tutor in the lab this week! We will then
discuss with the Tutors to clarify the case. Do
not change the testing function!

* Mid-semester exam: Monday, week 7 (16th
Sep).

* Please fill out questionnaire about conflicts with
other exams in weeks 6 and 7 until Fri 23rd Aug,
6pm.

Lecture outline

* What is “code quality”?
* Testing & debugging
* Defensive programming

Code quality

What is code quality and why
should we care?
* Writing code is easy – writing code so that you

(and others) can be confident that it is correct is
not.

* You will always spend more time finding and
fixing the errors that you made (“bugs”) than
writing code in the first place.

* Good code is not only correct, but helps people
(including yourself) understand what it does and
why it is correct.

(Extreme) example
* What does this function do? Is it correct?

def AbC(ABc):

ABC = len(ABc)

ABc = ABc[ABC−1:−ABC−1:−1]
if ABC == 0:

return 0

abC = AbC(ABc[−ABC:ABC−1:])
if ABc[−ABC] < 0:

abC += ABc[len(ABc)−ABC]
return abC

(Extreme) example – continued

* What does this function do? Is it correct?

def sum negative(input list):

’’’Sums up all the negative

numbers in input list.’’’

total = 0

for number in input list:

if number < 0:

total = total + number

return total

Aspects of code quality

* Commenting and documentation.
* Variable and function naming.
* Code organisation.
* Code efficiency (somewhat).

What makes a good comment?
* Raises the level of abstraction: what the code

does and why, not how.
- Except when “how” is especially complex.

* Describe parameters and assumptions
– python is not a typed language.

* Up-to-date and in a relevant place.
* Don’t use comments to make up for poor quality

in other aspects (organisation, naming, etc.).
* Good commenting is more important when

learning to program and when working with
other people.

Function docstring
* A (triple-quoted) string as the first statement

inside a function (module, class) definition.
* State the purpose and limitations of the

function, parameters and return value.
def solve(f, y, lower, upper):

’’’Returns x such that f(x) = y.

Assumes f is monotone and that a solution

lies in the interval [lower, upper]

(and may recurse infinitely if not).’’’

* Can be read by python’s help function.
* Do not mix comments with docstring!

What makes a bad comment?
* Stating the obvious.

x = 5 # Sets x to 5.

* Used instead of good naming.
x = 0 # Set the total to 0.

* Out-of-date, separate from the code it
describes, or flat out wrong.

loop over list to compute sum:

avg = sum(the list) / len(the list)

* More comments than code is (usually) a sign
that your program needs to be reorganised.

Good naming practice
* The name of a function or variable should tell

you what it does / is used for.
* Variable names should not shadow a names of

standard types, functions, or significant names
in an outer scope.

def a fun fun(int):

a fun fun = 2 ∗ int
max = max(a fun fun , int)

return max < int

(more about scopes in a coming lecture).

* Names can be long (within reason).
- A good IDE will autocomplete them for you.

* Short names are not always bad:
- i (j, k) are often used for loop indices.
- n (m, k) are often used for counts.
- x, y and z are often used for coordinates.

* Don’t use names that are confusingly similar in
the same context.
- E.g., sum of negative numbers vs.
sum of all negative numbers – what’s
the difference?

Code organisation

* Good code organisation
- avoids repetition;
- fights complexity by isolating subproblems and

encapsulating their solutions;
- raises the level of abstraction; and
- helps you find what you’re looking for.

* python constructs that support good code
organisation are functions, classes (not covered
in this course) and modules (later).

getDressed()

run()

shower()

getDressed()

lift()

shower()

def doFitnessActivity(activity):

getDressed()

activity()

shower()

doFitnessActivity(run)

doFitnessActivity(lift)

Functions

* Functions promote abstraction, i.e. they
separate what from how.

* A good function (usually) does one thing.
* Functions reduce code repetition.
- Helps isolate errors (bugs).
- Makes code easier to maintain.

* A function should be as general as it can be
without making it more complex.

def solve(lower, upper):

’’’Returns x such that

x ∗∗ 2 ∗ pi ~= 1. Assumes ...’’’
vs.

def solve(f, y, lower, upper):

’’’Returns x such that f(x) ~= y.

Assumes ...’’’

Efficiency
Premature optimisation is the root of all evil in
programming.

C.A.R. Hoare

* Modern computers usually have enough power
to solve your problem, even if the code is not
perfectly efficient.

* Programmer time is far more expensive than
computer time.

* Code correctness, readability and clarity is more
important than optimisation.

When should you consider
efficiency?

* For code that is going to run very frequently.
* If your program is too slow to run at all.

A poor choice of algorithm or data structure may
prevent your program from finishing, even on
small inputs.

* When the efficient solution is just as simple and
readable as the inefficient one.

Testing & Debugging

Unit testing
* Different kinds of testing (load, integration, user

experience, etc) have different purposes.
* Testing for errors (bugs) in a single program

component – typically a function – is called unit
testing.
- Specify the assumptions.
- Identify test cases (arguments), particularly

“edge cases”.
- Verify behaviour or return value in each case.

* The purpose of unit testing is to detect bugs.

Good test cases
* Satisfy the assumptions.
* Simple (enough that correctness of the value

can be determined “by hand”).
* Cover the space of inputs and outputs.
* Cover branches in the code.
* What are edge cases?
- Integers: 0, 1, -1, 2, ...
- float: very small (1e-308) or big (1e308)
- Sequences: empty (’’, []), length one.
- Any value that requires special treatment in

the code.

What is a “bug”?
We could, for instance, begin with cleaning up
our language by no longer calling a bug a bug
but by calling it an error. It is much more hon-
est because it squarely puts the blame where it
belongs, viz. with the programmer who made
the error. The animistic metaphor of the bug
that maliciously sneaked in while the program-
mer was not looking is intellectually dishonest
as it disguises that the error is the program-
mer’s own creation.

E. W. Dijkstra, 1988

The debugging process
1. Detection – realising that you have a bug.
2. Isolation – narrowing down where and when it

manifests.
3. Comprehension – understanding what you did

wrong.
4. Correction; and
5. Prevention – making sure that by correcting the

error, you do not introduce another.
6. Go back to step 1.

Kinds of errors
* Syntax errors.
- IDE/interpreter will tell you where they are.

* Runtime errors – code is syntactically valid, but
you’re asking the python interpreter to do
something impossible.
- E.g., apply operation to values of wrong type,

call a function that is not defined, etc.
- Causes an exception, which interrupts the

program and prints an error message.
- Learn to read (and understand) python’s error

messages!

SyntaxError: invalid syntax

if spam = 42:

print(’Hello!’)

IndentationError: unexpected indent

print(’Hello!’)

print(’Howdy!’)

TypeError: ’str’ object does not support item

assignment

spam = ’I have a pet cat.’

spam[13] = ’r’

IndexError: list index out of range

spam = [’cat’, ’dog’, ’mouse’]

print(spam[6])

* Semantic errors (logic errors).
- The code is syntactically valid and runs

without error, but it does the wrong thing
(perhaps only sometimes).

- To detect this type of bug, you must have a
good understanding of what the code is
supposed to do.

- Logic errors are usually the hardest to detect
and to correct, particularly if they only occur
under certain conditions.

* python allows you to do many things that you
never should.

Isolating and understanding a fault
* Work back from where it is detected

(e.g., the line number in an error message).
* Find the simplest input that triggers the error.
* Use print statements (or debugger) to see

intermediate values of variables and
expressions.

* Test functions used by the failing program
separately to rule them out as the source of the
error.
- If the bug only occurs in certain cases, these

need to be covered by the test set.

Some common errors
* python is not English.

if n is not int:

...

if n is (not int):

...

* Statement in/not in suite.
while i <= n:

s = s + i∗∗2
i = i + 1

return s

* Precision and range of floating point numbers.

* Loop condition not modified in loop.

def solve(f, y, lower, upper):

mid = (lower + upper) / 2

while math.fabs(f(mid) − y) > 1e−6:
if f(mid) < y:

lower = mid

else:

upper = mid

return mid

Defensive programming
Everyone knows that debugging is twice as
hard as writing a program in the first place.
So if you’re as clever as you can be when you
write it, how will you ever debug it?

Brian Kernighan
* Write code that is easy to read and well

documented.
- If it’s hard to understand, it’s harder to debug.

* Make your assumptions explicit, and fail fast
when they are violated.

Assertions
assert test expression

assert test expression , "error message"

* The assert statement causes a runtime error if
test expression evaluates to False.

* Violated assumption/restriction results in an
immediate error, in the place where it occurred.

* Don’t use assertions for conditions that will
result in a runtime error anyway (typically, type
errors).

Bad practice (delayed error)

def sum of squares(n):

if n < 0:

return "error:\ n is negative"
return (n ∗ (n + 1) ∗ (2 ∗ n + 1)) // 6

m = ...

k = ...

a = sum of squares(m)

b = sum of squares(m − k)
c = sum of squares(k)

if a − b != c:
print(a, b, c)

Good practice (immediate error)

def sum of squares(n):

assert n >= 0, str(n) + " is negative"
return (n ∗ (n + 1) ∗ (2 ∗ n + 1)) // 6

m = ...

k = ...

a = sum of squares(m)

b = sum of squares(m − k)
c = sum of squares(k)

if a − b != c:
print(a, b, c)

* Write explicit code, even when python implicitly
does the same thing.

def find box(color):

pos = 0

while robot.sense color() != ’’:

if robot.sense color() == color:

return pos

robot.lift up()

pos = pos + 1

return None # color not found

vs.

def find box(color):

pos = 0

while robot.sense color():

if robot.sense color() == color:

return pos

robot.lift up()

pos = pos + 1

* Don’t use “language tricks” when they obscure
the meaning.

