
COMP1730/COMP6730
Programming for Scientists

Sequence types, part 2

Announcements
* Mid-semester exam results in 2-3 weeks.
* Homework 4 due next Monday, but can be

checked this week if you submitted it yesterday.
* Solving lab exercises is highly recommended!

* Guest lecture tomorrow by A/Prof.
Robert Lanfear (Research School
of Biology) about how
programming helps his research.

Lecture outline

* Lists
* Mutable objects & references

Sequence data types (recap)

* A sequence contains n ≥ 0 values (its length),
each at an index from 0 to n − 1.

* python’s built-in sequence types:
- strings (str) contain only characters;
- lists (list) can contain a mix of value types;
- tuples (tuple) are like lists, but immutable.

* Sequence types provided by other modules:
- NumPy arrays (numpy.ndarray): fast matrix

operations, linear algebra.

Lists
* python’s list is a general sequence type:

elements in a list can be values of any type.
* List literals are written in square brackets with

comma-separated elements:
>>> a list of ints = [2, -4, 2, -8]
>>> a date = [12, "August", 2015]
>>> pairs = [[0.4, True],

["C", False]]
>>> type(pairs)
<class ’list’>

Creating lists

>>> monday = [18, "July"]
>>> friday = [22, "July"]
>>> [monday, friday]
[[18, "July"], [22, "July"]]
>>> list("abcd")
[’a’, ’b’, ’c’, ’d’]
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> [1/x for x in range(1,6)]
[1.0, 0.5, 0.3333333, 0.25, 0.2]

Lists of lists
>>> A = [[1, 2], [3, 4, 5],

[6, 7, 8, 9]]
>>> A[0]
[1, 2]
>>> A[1][2]
5
>>> [1, 2, 3][2]
3

* Indexing and slicing are operators
* Indexing and slicing associate to the left.
a list[i][j] == (a list[i])[j].

Lists of lists

>>> A[0]
[1, 2]
>>> A[0:1]
[[1, 2]]
>>> A[0:1][1:]
[]
>>> A[0:1][1]
IndexError: list index out of range

* Indexing a list returns an element, but slicing a
list returns a list.

n-dimensional arrays
* NumPy arrays can be n-dimensional.
>>> np.array([[1,2,3], [4,5,6]])
array([[1, 2, 3],

[4, 5, 6]])
>>> np.zeros([2, 3])
array([[0., 0., 0.],

[0., 0., 0.]])
>>> np.eye(3)
array([[1., 0., 0.]

[0., 1., 0.]
[0., 0., 1.]])

* Indexing an n-d array returns an (n − 1)-d array.
>>> A = np.array([[1,2,3],[4,5,6]])
>>> A[0]
array([1,2,3])
>>> np.transpose(A)[0]
array([1,4])

* Arrays support extended forms of indexing.
>>> A[:,1]
array([2,5])

Lists vs. NumPy arrays
* Lists can contain an arbitrary mix of value types;

all values in an array (or a column of a matrix)
must be of the same type.

* Arrays support more general forms of indexing
(n-dimensional, indexing with an array of
integers or Booleans).

* Arrays support element-wise math operations.
* NumPy/SciPy provides many functions on

arrays and matrices (e.g., linear algebra).
* Arrays are more (time and memory) efficient,

but this matters only when they are large.

Operations on lists
* list + list concatenates lists:

>>> [1, 2] + [3, 4]
[1, 2, 3, 4]
>>> np.array([1, 2]) + np.array([3, 4])
array([4, 6])

* int * list repeats the list:

>>> 2 * [1, 2]
[1, 2, 1, 2]
>>> 2 * np.array([1, 2])
array([2, 4])

Mutable objects and references

Values are objects
* In python, every value is an object.
* Every object has a unique(?) identifier.
>>> id(1)
136608064

(Essentially, its location in memory.)
* Immutable objects never change.
- For example, numbers (int and float),

strings and tuples.
* Mutable objects can change.
- For example, arrays and lists.

Immutable objects
* Operations on immutable objects create new

objects, leaving the original unchanged.
>>> a string = "spam"
>>> id(a string)
3023147264
>>> b string = a string.replace(’p’, ’l’)
>>> b string
’slam’
>>> id(b string)
3022616448
>>> a string
’spam’

n
o
t

t
h
e

s
a
m
e
!

Mutable objects

* A mutable object can be modified yet it’s identity
remains the same.

* Lists and arrays can be modified through:
- element and slice assignment; and
- modifying methods/functions.

* ndarray and list is the only mutable types
we have seen so far but there are many other
(sets, dictionaries, user-defined classes).

Element & slice assignment
>>> a list = [1, 2, 3]
>>> id(a list)
3022622348
>>> b list = a list
>>> a list[2] = 0
>>> b list
[1, 2, 0]
>>> b list[0:2] = [’A’, ’B’]
>>> a list
[’A’, ’B’, 0]
>>> id(b list)
3022622348

t
h
e

s
a
m
e

o
b
j
e
c
t
!

Modifying list methods

* a list.append(new element)

* a list.insert(index, new element)

* a list.pop(index)

- index defaults to -1 (last element).
* a list.insert(index, new element)

* a list.extend(an iterable)

* a list.sort()

* a list.reverse()

* Note: Most do not return a value.

Lists contain references

* Assignment associates a (variable) name with a
reference to a value (object).
- The variable still references the same object

(unless reassigned) even if the object is
modified.

* A list contains references to its elements.

* Slicing a list creates a new list, but containing
references to the same objects (“shallow copy”).

* Slice assignment does not copy.

>>> a list = [1,2,3]
>>> b list = a list
>>> a list.append(4)
>>> print(b list)

Image from pythontutor.com

>>> a list = [1,2,3]
>>> b list = a list[:]
>>> a list.append(4)
>>> print(b list)

Image from pythontutor.com

pythontutor.com
pythontutor.com

Image from pythontutor.com

>>> a list = [[1,2], [3,4]]
>>> b list = a list[:]
>>> a list[0].reverse()
>>> b list.reverse()
>>> print(b list)

pythontutor.com

Image from pythontutor.com

>>> a list = [[1,2], [3,4]]
>>> b list = a list[:]
>>> a list[0] = a list[0][::-1]
>>> b list.reverse()
>>> print(b list)

pythontutor.com

Image from pythontutor.com

>>> a list = [1,2,3]
>>> b list = [4,5,6]
>>> a list.append(b list)
>>> c list = a list[:]
>>> b list[0] = ’A’

pythontutor.com

Common mistakes

>>> a list = [3,1,2]
>>> a list = a list.sort()

>>> a list = [1,2,3]
>>> b list = a list
>>> a list.append(b list)

>>> a list = [[]] * 3
>>> a list[0].append(1)

NumPy arrays
* Slicing arrays does not (even shallow) copy:
>>> x = np.arange(1,6)
>>> y = x[1:-1]
>>> y
array([2, 3, 4])
>>> x[0:3] = np.zeros(3)
>>> y
array([0, 0, 4])

* The slice acts like a “window” into the array.
* Indexing with an array does copy.

