
COMP1730/COMP6730
Programming for Scientists

Introduction to the course
and administrative matters



Announcements

* Read announcements made in the news
forum on wattle



Lecture outline

* Why learn programming?
* Course overview.
* Info, contacts & schedule.
* Assessment scheme.
* Important TODOs.



Why learn programming?
* Science rests on data... more and more data.
- The Australian SKA

Pathfinder radio telescope
outputs 2.5GB/s (the SKA
is expected to be around
100 times more).

- A human genome (around
3 billion base pairs) can
be sequenced in 3 days.

* Processing this data needs software.



* Technical systems increasingly run on software.

- A modern car has over 30
computers, running
>10,000 lines of code.

* Simulation and optimisation are needed to solve
large-scale design challenges.

- Intermittent renewables
produced ∼8.25% of
Australia’s electricity in
2017. How do we design
the grid to work with 100%?



* As scientist or engineer, you will need to
understand how software works, and how to
modify or extend it:
- understand algorithms and implementation to

interpret and explain their results;
- debug programs (find and correct errors);
- modify existing programs to solve your

(unique) problem.
* By the end of the course, we hope you’ll tackle a

novel problem by thinking, “Hey, I can just write
a program to solve that...”



Programming example
* you want to calculate the monthly cost of a

$300,000 home loan...
- use one of the on-line calculators?

* ...for all loan terms in 10-25 years, and an
interest rate of 5.5%, 6.5% or 7.5%.

* The formula is

A = P
r(1 + r)n

(1 + r)n − 1

(derive it, or look it up on wikipedia).
Let’s write a program!



import math
import matplotlib.pyplot as mpl

def monthly cost(principal, interest rate, years):
monthly rate = interest rate/12
# interest rate is given in % so need to divide by 100
r = monthly rate/100
n payments = years * 12
return principal * ((r * math.pow(1 + r, n payments)) /

(math.pow(1 + r, n payments) - 1))

years = range(10,26)
mc = [monthly cost(300000, 5.5, y) for y in years]
mpl.plot(years, mc, ’g-’)
mc = [monthly cost(300000, 6.5, y) for y in years]
mpl.plot(years, mc, ’b-’)
mc = [monthly cost(300000, 7.5, y) for y in years]
mpl.plot(years, mc, ’r-’)
mpl.show()



Why python?
* This is not a course on programming in python;

it’s a course on programming, that uses python.
* Python has been consistently ranked in top 5

most popular programming languages,
* particularly for science and engineering uses.
* Open source, available on most platforms.
* Many modules:
- over 200 in the python standard library;
- over 100,000 on pypi.org.

* We will use python 3.

pypi.org


Course description & aims

* Introduction to programming (using python).
- No prior programming or computer science

knowledge is required.
- This does not mean it is easy!

* Two aims:
- Programming as a practical skill.
- Understand some basic CS concepts; build

foundation for later courses.



Learning outcomes
(revised from ANU Programs & Courses)

Students who succeed in all aspects of this course will:

* be able to design and write readable and correct small
programs to solve practical data processing problems;

* be able to read, understand and debug small computer
programs;

* understand some practical limitations on computer
programs, including scaling (wrt time and memory) and
numeric precision (rounding errors) issues.



About you: students in the course





Course info & contacts
* cs.anu.edu.au/courses/comp1730/

* Wattle for forums, quizzes, surveys, assignment
submission.

* Read the news & announcements!

* To ask a question:
- Use the discussion forum on wattle.
- Teams channel for labs and after lectures.
- For personal questions, use the course email:
comp1730@anu.edu.au.

- Always use your ANU email.

cs.anu.edu.au/courses/comp1730/


Discussion forum – 3 simple rules
1. Read before you post.

Before posting a question, check if your
question has already been answered.

2. Give your post a good, descriptive topic.
Don’t write “A question”. Write something like
“Variable assignment: why does the value not
change?”.

3. You may not post solutions to assignment
problems.

• This applies to any on-line forum.



Schedule overview
* Two lectures / week.
- Some live & recorded, some pre-recorded.
- Follow content & schedule on the course web

site, and read the news & announcements.
* One 2-hour lab / week (starting from week 2).
- Answer the lab time preference survey on

wattle – you have until noon on Wednesday!
- Changes to the initial allocation will be

possible to the end of week 2.
* Except as detailed in the assessment scheme,

attendance is never mandatory.



Assessment scheme (preliminary)

* 5 small homework
assignments (15%)

* 1 larger project
assignment (25%)

* Final exam (in 1 or 2
parts) (60%)

S. Week
3 Homework 1 due (Monday)

In lab: Questions on Hw 1
4 Homework 2 due (Monday)

In lab: Questions on Hw 2
6 Homework 3 due (Monday)

In lab: Questions on Hw 3
Break

7 or 8 Homework 4 due (Monday)
In lab: Questions on Hw 4

9 Homework 5 due (Monday)
In lab: Questions on Hw 5

11 Project due
Exam Final exam(s)
period



* The complete assessment scheme is on the
course web site at cs.anu.edu.au/
courses/comp1730/assessment.

* Note: “any submitted work may be subject to an
additional oral examination”, which can change
the assessment mark in any way.

* The assessment scheme (items and weights)
will be final at the end of week 2. (Dates can
change after that.) Any changes will be
announced through the course web page and
news forum.

cs.anu.edu.au/courses/comp1730/assessment
cs.anu.edu.au/courses/comp1730/assessment


* All assignment deadlines are hard – no late
submissions will be accepted.

* Read
www.anu.edu.au/students/

program-administration/assessments-exams/

regarding deferred assessments and special
consideration.

www.anu.edu.au/students/program-administration/assessments-exams/
www.anu.edu.au/students/program-administration/assessments-exams/


Academic honesty

* Discussing programming problems and ways to
solve them with other students is a great way to
learn
– just don’t discuss assessment problems.

* Homeworks are individual. You must write your
own code, and be able to show that you
understand every aspect of what you have
written.



* The project assignment may be done in small
groups.
- Collaboration (including copying solutions)

between groups is not permitted.
- The assignment will also have an indvidual

component, which you must do by yourself.

* The final exam is individual. You may not
discuss the exam questions or your answers
with anyone (this includes, of course, in any
on-line forum).



Important TODOs

* Complete the demographic information
questionarie.

* Complete the lab time preference survey.
- You have until noon on Wednesday!
- A preliminary allocation to lab groups will be

posted later this week.
- You will have a limited time to change your lab.
- Labs only start in semester week 2.
- In-lab assessment starts in semester week 3.



Important TODOs
* Prepare for the labs! Watch recorded lectures,

read lab instructions, and attempt some of the
exercises before attending your lab.

* Make sure you have a working python
programming environment:
- install Anaconda (spyder) on your own

computer; or
- install another python3 implementation; or
- verify that you can reliably use the VDI.
Read cs.anu.edu.au/courses/comp1730/labs

for more information.

cs.anu.edu.au/courses/comp1730/labs


Student course representatives
* Course representatives:
- point of contact for fellow students who have

issues/comments that they are not
comfortable to raise with convenor directly;

- participate in the SRC meetings a few times
per semester.

- Reps are encouraged to provide collective
feedback directly to the convenor/lecturer.

* Interested? Write to comp1730@anu.edu.au
or talk to us after the lecture.

comp1730@anu.edu.au

