
COMP1730/COMP6730
Programming for Scientists

Control, part 2: Iteration

Outline

* Iteration: The while statement with examples
* Common problems with loops.

Program control flow

Images from Punch & Enbody

Iteration
while test:

statement
statement
...

statement
...

UNTIL

while test:
statement
statement
...

statement
...

* Iteration repeats a suite of statements.
* A test is evaluated before each iteration, and the

suite executed (again) if it is true.

Iteration statements in python

* The while loop repeats a suite of statements
as long as a condition is true.

* The for loop iterates through the elements of a
collection or sequence (data structure) and
executes a suite once for each element.
- We’ll come back to the for loop later in the

course.

The while loop statement

while test expression :
suite

statement(s)

1. Evaluate test expression (converting the
value to type bool if necessary).

2. If the value is True, execute the suite
once, then go back to 1.

3. If the value is False, skip the suite and
go on to the following statements (if any). Image from Punch

& Enbody

Suites (reminder)
* A suite is a (sub-)sequence of statements.
* A suite must contain at least one statement!
* In python, a suite is delimited by indentation.
- All statements in the suite must be preceded

by the same number of spaces/tabs
(standard is 4 spaces).

- The indentation depth of the suite following if
/ else / while : must be greater than that of
the statement.

* A suite can include nested suites (if’s, etc).

Variable assignment (reminder)
* A variable is a name that is associated with a

value in the program.
* Variable assignment is a statement:
var name = expression

- Note: Equality is written == (two =’s).
* A name–value association is created by the first

assignment to the name;
* subsequent assignments to the same name

change the associated value.

(From pythontutor.com)

* For example,
an int = 3 + 2
an int = an int * 5

1. Evaluate expression 3 + 2 to 5.
2. Store value 5 with name an int

3. Evaluate expression an int * 5 to 25.
4. Store value 25 with name an int, replacing the

previous associated value.

pythontutor.com

Problem: Counting boxes

* How many boxes
are in the stack
from the box in
front of the
sensor and up?

* While robot.sense color() != ’’, move
the lift up, and count how many times; then
move the lift down that many times.

def count boxes():
num boxes = 0
while robot.sense color() != ’’:

num boxes = num boxes + 1
robot.lift up()

steps to go = num boxes
while steps to go > 0:

robot.lift down()
steps to go = steps to go - 1

return num boxes

Problem: Solving an equation

* Solve f (x) = 0.
* The interval-halving

algorithm:
- if f (m) ≈ 0, return m;
- if f (m) < 0, set l to m;
- if f (m) > 0, set u to m.

return from a loop
* A loop (while or for) can appear in a function

suite, and a return statement can appear in
the suite of the loop.
def find box(color):

while robot.sense color() != ’’:
if robot.sense color() == color:

return True
robot.lift up()

return False

* Executing the return statement ends the
function call, and therefore also exits the loop.

Problem: Greatest common divisor

* For two positive integers a and b, find the
largest integer that divides a and b.

* Euclid’s algorithm: Assuming a ≥ b,
- gcd(a,b) = b if b divides a;
- gcd(a,b) = gcd(b,a%b), otherwise.

Writing and debugging loops

Repeat while condition is true

* A while loop repeats as long as the condition
(test expression) evaluates to True.

* If the condition is initially False, the loop
executes zero times.

* If no variable involved in the condition is
changed during execution of the suite, the value
of the condition will not change, and the loop will
continue forever.

Common problems with while
loops
* Loop never starts: the control variable is not

initialised correctly.

find smallest non-trivial
divisor of num:
i = 1
while num % i != 0:

i = i + 1

- num % 1 is always 0!

Common problems with while
loops
* Loop never ends: the control variable is not

updated in the loop suite, or not updated in a
way that can make the condition false.

i = 0
while i != stop num:

i = i + step size

- What if stop num < 0?
- or step size < 0?
- or step size does not divide stop num?

Take home message

* Branching (if) and iteration (while loop) are
two main control mechanisms to change the
sequential flow of a program.

* Some (but not always) recursions can be
re-written as iterations to solve the same
problem (and vice versa).

* Make sure that the test condition will evaluate to
False at some point. Otherwise you will enter
an infinite loop!

