
COMP1730/COMP6730
Programming for Scientists

Data science

Data analysis

* Representing tables
* Reading data files
* Working with data:

selecting, visualising
* Interpretation

Working example

Table shows how
often each model
fits best to each test
data set. We want
to answer: Which
model is the best?

Data files
* Many data file formats (e.g., excel, csv, json,

binary). We’ll use the following csv file.
Model,test1,test2,test3,test4,test5,test6,test7,test8
1,40,571,353,9,95,41,1428,350
2,16,200,108,2,495,434,88,0
3,7,352,216,9,1201,1897,9,0
4,10,187,202,280,704,215,47,0
5,52,616,204,2,47,17,122,5
6,4,147,146,0,3646,536,0,0
7,80,914,373,4,45,2,161,60
8,67,406,778,1,9,2,3,30
9,52,635,303,1,5,0,5,860
10,121,712,595,0,19,0,1,53
11,51,1914,449,0,29,18,4,50

Which data type can we use to represent tables?

Representing tables

* Lists are 1-dimensional, but a list can contain
values of any type, including lists.

* A table can be stored as a list of lists, by row, for
example:
data[i] # i:th row
data[i][j] # j:th column of i:th row

* Indexing (and slicing) are operators
* Indexing (and slicing) associate to the left:

data[i][j] == (data[i])[j]

Reading data files

* Use a python module that helps with reading the
file format:

import csv
with open("filename.csv") as csvfile:

reader = csv.reader(csvfile)
next(reader) # skip the header
data = [row for row in reader]

* More about (reading and writing) files later in
the course.

List comprehension
* A list comprehension creates a list by evaluating

an expression for each value in an iterable
collection (e.g., a sequence) using syntax:
[expression for item in a sequence]

* Example: selecting columns of the table
first col = [row[0] for row in data]
last two cols = [row[−2:] for row in data]

* Equivalent to:
first col = []
for row in data:

first col.append(row[0])

Conditional list comprehension

* Syntax:
[expression for item in a sequence if boolean expression]

* Example: select rows where column-1 is > 10
sel rows = [row for row in data if int(row[1]) > 10]

* Equivalent to:
sel rows = []
for row in data:

if int(row[1]) > 10:
sel rows.append(row)

Sorting
* sorted(seq) returns a list with values in seq

sorted in default order (<).
- We can sort the rows in a table.
- Reminder: comparison of sequences is

lexicographic.
* sorted(seq, key=fun) sorts value x by
fun(x).
def new order(row):

return −row[−1] # decreasing on last col

sd = sorted(data, key=new order)

Descriptive statistics

* min(seq);
* max(seq);
* mean (sum(seq) / len(seq));
* variance.
* No built-in function for median.

def median(seq):
if len(seq) % 2 == 1:

return sorted(seq)[len(seq) // 2]
else:

return sum(sorted(seq)[(len(seq)//2−1):(len(seq)//2+1)])/2

Visualisation
* The purpose of visualisation is to see or show

information – not drawing pretty pictures!
* Different kinds of plots show different things:
- barplot
- pie-chart
- histogram or cumulative distribution
- scatterplot
- line and area plot

* Use one that best makes the point!
* Choose your dimensions carefully.
* Label axes, lines, etc.

Matplotlib

* Matplotlib is a Python 2D plotting library, which
produces publication quality figures.

* “Matplotlib makes easy things easy and hard
things possible”.

* Documentation: matplotlib.org

matplotlib.org

Using matplotlib

import matplotlib.pyplot as plot
first col = [int(row[0]) for row in data]
second col = [int(row[1]) for row in data]

draw a bar plot
plot.bar(first col, second col)
plot.xlabel("Model")
plot.ylabel("Best frequency")
plot.show()

draw a pie−chart
plot.pie(second col, labels = first col, autopct=’%1.1f%%’)
plot.show()

Interpretation
What is this telling us?

Interpretation
What is this telling us?

Interpretation

* To answer question which model is best,
Barplots are better than pie-chart in visualising
the “goodness of fit” of the models.

* There is no absolute answer: some model is
better than other depending on the test sets.
None of the models is always the best.

* Some test statistics is needed to measure if a
model is “significantly” better than others for a
given data set.

Advanced modules

NumPy and SciPy
* The NumPy and SciPy libraries are not part of

the python standard library, but often considered
essential for scientific / engineering applications.

* The NumPy and SciPy libraries provide
- an n-dimensional array data type (ndarray);
- fast math operations on arrays/matrices;
- linear algebra, Fourier transform, random

number generation, signal processing,
optimisation, and statistics functions;

- plotting (via matplotlib).
* Documentation: numpy.org and scipy.org.

numpy.org
scipy.org

NumPy Arrays
* numpy.ndarray is sequence type, and can

also represent n-dimensional arrays.
- len(A) is the size of the first dimension.
- Indexing an n-d array returns an (n − 1)-d

array.
- A.shape is a sequence of the size in each

dimension.
* All values in an array must be of the same type.
* Element-wise operators, functions on arrays.
* Read/write functions for some file formats.

Generalised indexing
* If A is a 2-d array,
- A[i,j] is element at i, j (like A[i][j]).
- A[i,:] is row i (same as A[i]).
- A[:,j] is column j.
- : can be start:end.

* If L is an array of bool of the same size as A,
A[L] returns an array with the elemnts of A
where L is True (does not preserve shape).

* If I is an array of integers, A[I] returns an
array with the elemnts of A at indices I (does
not preserve shape).

Pandas

* Library for (tabular) data analysis.
- Special types for 1-d (Series) and 2-d

(DataFrame) data.
- General indexing, selection, alignment,

grouping, aggregation.
* Documentation: pandas.pydata.org
* Beware: Pandas data types do not behave as

you expect.

pandas.pydata.org

Take home message

* Python is powerful in data analysis.
* Think carefully about visualisation: How can

people quickly interpret the results?
* We have only scratched the surface of

Matplotlib. Extensive documentation:
https://matplotlib.org or just google it!

https://matplotlib.org

