
COMP1730/COMP6730
Programming for Scientists

Dictionaries and sets

Lecture outline

* Mappings: the dict type.
* Sets: the set type.

Mappings
* A mapping (a.k.a. dictionary) stores key–value

pairs; each key stored in the mapping has
exactly one value. A key may be any type of
constant value.

* Examples of use:
- Storing a look-up index (e.g., a contact list).
- Organising data with “complex” labels (like a

multi-dimensional table).
- Storing solutions to subproblems in a dynamic

programming algorithm.

* What you can do with a mapping:
- Create new, empty mapping.
- Store a value with a key.
- Is a given key stored in the mapping?
- Look up the value stored for a given key.
- Remove key.
- Enumerate keys, values, or key–value pairs.

* Key lookup is (amortised) constant time.

python’s dict type
* Create a new dictionary:
>>> adict = {}
>>> adict = dict()
>>> adict = { (2015,12) : 33.4,

(2016,6) : 148.3 }
>>> adict = { "be" : 2, "can" : 3 }
- Dictionary (and set!) literals are written with

curly brackets ({ and }).
- The literal can contain key : value pairs,

which become the initial contents.

* Key exists in dictionary:
>>> key in adict

* Look-up and storing values:
>>> adict = { "be" : 2, "can" : 1 }
>>> adict["can"]
1
>>> adict["now"] = 2
>>> adict[3] = "yet"

- To index a value, write the key in square
brackets after the dictionary expression.

- Assigning to a dictionary index expression
adds or updates the key.

* dict is a mutable type.
- Like lists, arrays.

* Keys must be immutable (?).
>>> alist = [1,0]
>>> adict = { alist : 2 }
TypeError: unhashable type: ’list’

* A dictionary can contain a mix of key types.
* Stored values can be of any type.

* Removing keys:
- del adict[key]

Removes key from adict.
- adict.pop(key)

Removes key from adict and returns the
associated value.

- adict.popitem()
Removes an arbitrary (key, value) pair
and returns it.

* del and pop cause a runtime error if key is not
in dictionary; popitem if it is empty.

Iteration over dictionaries

* adict.keys(), adict.values(), and
adict.items() return views of the keys,
values and key–value pairs.

* Views are iterable, but not sequences.
for item in adict.items():

the key = item[0]
the value = item[1]
print(the key, ’:’, the value)

Programming problem(s)

* Counting frequency of items:
- words in a file (or web page);
- (combinations of) values in a data table.

* Building a Markov model (over text, for
example).

* Cross-referencing data tables with common
keys.

Sets
* A set is an unordered collection of (immutable)

values without duplicates.
* Like a dictionary with only keys (no values).

* What you can do with a set:
- Create a new set (empty or from an iterable).
- Add or remove values.
- Is a given element in the set? (membership).
- Mathematical operators: union, intersection,

difference (note: not complement!).
- Enumerate values.

python’s set type
* Set literals are written with { .. }, but with

elements only, not key–value pairs:
>>> aset = { 1, ’c’, (2.5, ’b’) }

* { } creates an empty dictionary, not a set!
* A set can be created from any iterable:
>>> aset = set("AGATGATT")
>>> aset
{’T’, ’A’, ’G’}
- No duplicate elements in the set.
- No order of elements in the set.

Set operators
elem in aset membership (e ∈ A)
aset.issubset(bset) subset (A ⊆ B)
aset | bset union (A ∪ B)
aset & bset intersection (A ∩ B)
aset - bset difference (A \ B, A− B)
aset ˆ bset symmetric difference

* Set operators return a new result set, and do
not modify the operands.

* Also exist as methods (aset.union(bset),
aset.intersection(bset), etc).

* The union of a set and
b set is the set of all
elements that are in
a set, in b set, or in
both.

* The intersection of
a set and b set is the
set of elements that are
in both a set and
b set.

(Images from Punch & Enbody)

* The difference of a set
and b set is the set of
elements in a set that
are not in b set.

* The symmetric
difference of a set and
b set is the set of
elements that are in
either but not in both.

(Images from Punch & Enbody)

* a set is a subset of
b set iff every element
in a set is also in
b set.

* A ⊆ B iff A ∩ B = A.
(Image from Punch & Enbody)

Copying
* Dictionaries and sets are mutable objects.
* Like lists, dictionaries and sets store references

to values.
* dict.copy() and set.copy() create a

shallow copy of the dictionary or set.
- New dictionary / set, but containing references

to the same values.
- Dictionary keys and set elements are

immutable, so shared references do not
matter.

- Values stored in a dictionary can be mutable.

adict = {1:[0],2:[1]}
bdict = adict
cdict = adict.copy()
bdict[1] = [2]
cdict[1] = [0, 0]
adict[2].append(1)

adict = {1:[0],2:[1]}
bdict = adict
cdict = adict.copy()
bdict[1] = [2]
cdict[1] = [0, 0]
adict[2].append(1)

Takehome

* Dictionaries are somewhat like sequences but
allows arbitrary indices with very fast lookup and
the items have no ordering.

* Set is different from dictionaries by having only
keys (no values).

