COMP1730/COMP6730

Programming for Scientists

Examples on Code Quality
& Debugging

Australian
r\latlonal

3 University

Code quality example

Lab 4 has a debugging question about a function
that returns the position of an element in a
sequence. Here is an implementation:

def find.element(sq, y):
X = 0 # index
this handles the case when y is not in the sequence
if len(sq) == 0:
return 0
while sq[x] != y:
X =x+1
np.max returns the maximum number in an array
if x < len(sq):
X =X+ 1—1# don’t want to change i again
else:
return x
this is the end of the loop
return x

Can the quality of this code be improved?

Aspects of code quality: reminder

1.

W

Docstrings: Descriptions of the purpose, inputs,
outputs, assumptions?

Variable and function naming: good and
descriptive?

Comments: appropriate/relevant?

Code organisation: non-redundant? easy to
understand? functional decomposition?

Code efficiency when necessary.

Australian

National
University

1. Docstrings

def find_element(sq, y):
"""Return the position of element y in the sequence sq.
If y is not present, return the sequence length.
X = 0 # iIndex
this handles the case when y is not in the sequence
if len(sq) == 0:
return 0
while sq[x] !=y:
X =x+1
np.max returns the maximum number in an array
if x < len(sq):
X =X+ 1—1# don’t want to change i again
else:
return x
this is the end of the loop
return x

2. Naming

* Rename sgto seq or sequence.

* Rename y to target or target_element (x
and y could be used for coordinates).

* Rename x to 1 or index.

Australian

National
University

Code after name refactoring

def find_element(seq, target):
"""Return the position of element target in the sequence seq.
If target is not present, return the sequence length.

i =0 # index
this handles the case when target is not in the sequence
if len(seq) == 0:
return 0
while seq[i] != target:
i=1+1
np.max returns the maximum number in an array
if 1 < len(seq):
i=1i+1-1# don’t want to change i again
else:
return i
this is the end of the loop
return i

Australian
National

University

3. Comments

* Wrong comment:

this handles the case when target is not in the sequence
if len(seq) ==
return 0

*» Better change to:

handles special case of empty sequence
if len(seq) ==
return 0

Australian

National
University

Code after adjusting comments

def find_element(seq, target):
"""Return the position of element target in the sequence seq.
If target is not present, return the sequence length.
i=20
handles special case of empty sequence
if len(seq) == 0:

return 0
going through positions of input sequence to find the element
while seq[i] != target:

i=1+1

if 1 < len(seq):
i=1i+1-1# don’t want to change i again
else:
return i
target is found at position i
return i

Australian
National

University

4. Code organisation

*» Unnecessary code:

if 1 < len(seq):

i=1+1-1# don’t want to change 1 again
else:

return i

*» Better change to:

if i >= len(seq):
return i # reaching the end, target is not found

Australian

National
University

Together after improvements

def find_element(seq, target):
"""Return the position of element target in the sequence seq.
If target is not present, return the sequence length.

i=0
handles special case of empty sequence
if len(seq) ==

return 0
going through positions of input sequence to find the element
while seq[i] != target:

i=1+1

if i >= len(seq):
return i # reaching the end, target is not found
target is found at position 1
return i

However, it takes time to understand how the while
loop works.

Australian
National

University

So better:

def find.element(seq, target):

"""Return the position of element target in the sequence seq.
If target is not present, return the sequence length.
going through positions of input sequence to find the element
for index in range(len(seq)):

if seq[index] == target:

return index # target is found

target is not found
return len(seq)

Debugging example

Australian
ional

Lab 4 has an exercise to debug an incorrect code
(assuming number is non-negative):

def sum_even_digits (number):
m =1 # the position of the next digit
dsum = 0 # the sum
while number % (10 *x m) != 0:
get the m:th digit
digit = (number % (10 xx m)) // (10 **x (m — 1))
only add it if even:
if digit % 2 == 0:
dsum = dsum + digit
m=m+1
return dsum

How to debug?

1. Test: Design some test cases and run through
test(s) where the code fails.

2. Locate the line(s) that caused the bug:

- Use print statement, esp. inside a loop.
- Use debugging facility of the IDE.

3. Correct the code without introducing new bug.

Australian
National

University

1. Testing

edge cases
assert sum_even_digits(0) == 0
assert sum_even_.digits(l) ==

Only odd digits
assert sum_even.digits(1537) ==

Only even digits
assert sum_even_.digits(2604) == 2+6+4

Mixed odd and even digits:

assert sum_even_.digits(25048) == 14 # first and last digits are even
assert sum_even_digits(32059) == 2 # first and last digits are odd
assert sum_even.digits(5470) == 4 # first odd digit, last even digit
assert sum_even.digits(61123) == 8 # first even digit, last odd digit

Live demo now

|;__;| Ausigﬁa[ﬁm

Debugging in Spyder

Consoles Projects Tools \

Debug 3BFs
Step $8F01
Step Into sem |
| Step Return O 8F11 ¢
| Continue ¥F12
| Stop 0 %F12

Set/Clear breakpoint F12
Set/Edit conditional breakpoint ~ {*F12
Clear breakpoints in all files

List breakpoints

Me=sE» R

*

Debug: start a debug
session

Step: Run current line

*» Step Into: Go into a

function at current line

Step Return: Run until
current function returns

Continue: Run until the
next breakpoint

Stop: Stop debug session

Take home messages

* Remember important aspects of coding quality:
docstrings, naming, comments, and code

organisation.
* Try to utilise the debugging facility of the IDE
(e.g. Spyder).

