
COMP1730/COMP6730
Programming for Scientists

Examples on Code Quality
& Debugging

Code quality example

Lab 4 has a debugging question about a function
that returns the position of an element in a
sequence. Here is an implementation:
def find element(sq, y):

x = 0 # index
this handles the case when y is not in the sequence
if len(sq) == 0:

return 0
while sq[x] != y:

x = x + 1
np.max returns the maximum number in an array
if x < len(sq):

x = x + 1 − 1 # don’t want to change i again
else:

return x
this is the end of the loop
return x

Can the quality of this code be improved?

Aspects of code quality: reminder

1. Docstrings: Descriptions of the purpose, inputs,
outputs, assumptions?

2. Variable and function naming: good and
descriptive?

3. Comments: appropriate/relevant?
4. Code organisation: non-redundant? easy to

understand? functional decomposition?
5. Code efficiency when necessary.

1. Docstrings
def find element(sq, y):

"""Return the position of element y in the sequence sq.
If y is not present, return the sequence length.
"""
x = 0 # index
this handles the case when y is not in the sequence
if len(sq) == 0:

return 0
while sq[x] != y:

x = x + 1
np.max returns the maximum number in an array
if x < len(sq):

x = x + 1 − 1 # don’t want to change i again
else:

return x
this is the end of the loop
return x

2. Naming

* Rename sq to seq or sequence.
* Rename y to target or target element (x

and y could be used for coordinates).
* Rename x to i or index.

Code after name refactoring
def find element(seq, target):

"""Return the position of element target in the sequence seq.
If target is not present, return the sequence length.
"""
i = 0 # index
this handles the case when target is not in the sequence
if len(seq) == 0:

return 0
while seq[i] != target:

i = i + 1
np.max returns the maximum number in an array
if i < len(seq):

i = i + 1 − 1 # don’t want to change i again
else:

return i
this is the end of the loop
return i

3. Comments

* Wrong comment:
this handles the case when target is not in the sequence
if len(seq) == 0:

return 0

* Better change to:
handles special case of empty sequence
if len(seq) == 0:

return 0

Code after adjusting comments
def find element(seq, target):

"""Return the position of element target in the sequence seq.
If target is not present, return the sequence length.
"""
i = 0
handles special case of empty sequence
if len(seq) == 0:

return 0
going through positions of input sequence to find the element
while seq[i] != target:

i = i + 1
if i < len(seq):

i = i + 1 − 1 # don’t want to change i again
else:

return i
target is found at position i
return i

4. Code organisation

* Unnecessary code:
if i < len(seq):

i = i + 1 − 1 # don’t want to change i again
else:

return i

* Better change to:
if i >= len(seq):

return i # reaching the end, target is not found

Together after improvements
def find element(seq, target):

"""Return the position of element target in the sequence seq.
If target is not present, return the sequence length.
"""
i = 0
handles special case of empty sequence
if len(seq) == 0:

return 0
going through positions of input sequence to find the element
while seq[i] != target:

i = i + 1
if i >= len(seq):

return i # reaching the end, target is not found
target is found at position i
return i

However, it takes time to understand how the while
loop works.

So better:

def find element(seq, target):
"""Return the position of element target in the sequence seq.
If target is not present, return the sequence length.
"""
going through positions of input sequence to find the element
for index in range(len(seq)):

if seq[index] == target:
return index # target is found

target is not found
return len(seq)

Debugging example

Lab 4 has an exercise to debug an incorrect code
(assuming number is non-negative):
def sum even digits(number):

m = 1 # the position of the next digit
dsum = 0 # the sum
while number % (10 ∗∗ m) != 0:

get the m:th digit
digit = (number % (10 ∗∗ m)) // (10 ∗∗ (m − 1))
only add it if even:
if digit % 2 == 0:

dsum = dsum + digit
m = m + 1

return dsum

How to debug?

1. Test: Design some test cases and run through
test(s) where the code fails.

2. Locate the line(s) that caused the bug:
- Use print statement, esp. inside a loop.
- Use debugging facility of the IDE.

3. Correct the code without introducing new bug.

1. Testing
edge cases
assert sum even digits(0) == 0
assert sum even digits(1) == 0

Only odd digits
assert sum even digits(1537) == 0

Only even digits
assert sum even digits(2604) == 2+6+4

Mixed odd and even digits:
assert sum even digits(25048) == 14 # first and last digits are even
assert sum even digits(32059) == 2 # first and last digits are odd
assert sum even digits(5470) == 4 # first odd digit, last even digit
assert sum even digits(61123) == 8 # first even digit, last odd digit

Live demo now

Debugging in Spyder
* Debug: start a debug

session
* Step: Run current line
* Step Into: Go into a

function at current line
* Step Return: Run until

current function returns
* Continue: Run until the

next breakpoint
* Stop: Stop debug session

Take home messages

* Remember important aspects of coding quality:
docstrings, naming, comments, and code
organisation.

* Try to utilise the debugging facility of the IDE
(e.g. Spyder).

