COMP1730/COMP6730

Programming for Scientists

Testing and Defensive
Programming.

Overview

* [esting
* Defensive Programming

Overview of testing
* The purpose of testing is to detect bugs. There
are many different types of testing - load testing,
integration testing, user experience testing, etc.
» Different software systems have different testing
requirements, based on:
— Consequences of failure
— Complexity of software
- Frequency of use
- Hardware and user interactions
* Even for critical, commercially developed
software, testing gives no guarantees - e.g.
Boeing 737 Max crashes.

tiona
University

Unit-Testing

* We are concerned with unit-testing or functional
testing.

*» Usually done at the function (or method level).

* Done by calling a function with specified
parameters (inputs) and checking that the return
value (output) is as expected, called test cases.

Good test cases

* Satisfy the assumptions.

*» Simple (enough that correctness of the value

can be determined “by hand”).

Cover the space of inputs and outputs.

Cover branches in the code.

We usually want to focus on edge-cases:

- Integers: 0, 1, -1, 2, ...

- float: very small (1e-308) or big (1e308)

- Sequences: empty (* 7, []), length one.

- Any value that requires special treatment in
the code.

*

*

*

|;__;| Ausigﬁa[ﬁm

The assert Statement

*» Basic usage:

assert boolean_expression
assert boolean_expression, "message"

* |f the expression is True execution continues.

* |If the expression is False an
AssertionError is raised, execution stops
and the message is printed.

*» Can be used to intentially cause a run-time error
if assumptions are violated.

Australian
National

University

Example from homework 2

def test_combinations():
"""This function runs a number of tests of combinations function.
If it works ok, you will see the output ("all tests passed") at
the end when you call this function; if some test fails, there will
be an error message."""
simple test cases:

assert combinations(5, 2) == 10
assert type(combinations(5, 2)) is int
assert combinations(5, 3) == 10

number of possible 5-card hands from a deck of 52 cards:
assert combinations(52, 5) == 2598960

some edge cases:

assert combinations(0, 0) == 1

assert combinations(1l, 0) ==

assert combinations(l, 1) ==

assert combinations (100, 0) ==

assert combinations (100, 100) ==

print("all tests passed")

Other Testing Considerations

* Floating point precision

* Random numbers (use a seed to get
reproducable results).

*» User input (isolate the user input to a function
and simulate input).

*» Only use your code to generate tests for
refactoring purposes, not for testing correctness.

*» Testing only guarantees your code works for
the test cases!

Defensive programming

Everyone knows that debugging is twice as
hard as writing a program in the first place.
So if you're as clever as you can be when you
write it, how will you ever debug it?

Brian Kernighan

*» Write code that is easy to read and well
documented.
- If it's hard to understand, it’s harder to debug.

|;__;| Ausigﬁa[ﬁm

Code Quality Matters!

* A function that is hard to read is hard to debug.

def AbC(ABc):

ABC = len(ABc)
ABc = ABc[ABC-1:—ABC-1:-1]
if ABC == 0:

return 0
abC = AbC(ABc[-ABC:ABC-1:1])
if ABc[-ABC] < 0:

abC += ABc[len(ABc)—ABC]
return abC

*» A small function that only does one thing is

easier to test than a large function that does
many things.

| Australian
|—"“"‘-‘—“| ional

Pre and Post Conditions

* assert Statements allow us to ensure that only
appropriate parameters are passed as
arguments to functions. Example:

assert type(param.a) == int and param.a > 0

Australian
ional

Bad practice (delayed error):

def sum_of_squares(n):
if n< 0:

return "error:\ n is negative"
return (n « (n + 1) « (2 «xn+1)) // 6

sum_of_squares(m)
sum_of_squares(m — k)
sum_of_squares (k)
fa—-—b!=c:

print(a, b, c)

m
k
a
b
C
i

Good practice (immediate error):

def sum_of_squares(n):
assert n >= 0, str(n) +
return (n * (n + 1) x (

is negative"
2xn+1)) // 6

Explicit vs Implicit

*

Make things explicit if they are unclear or could
be confusing. Even if they are working as
intended.

return None is better than no return
statement.

— (2 %% 2)instead of - 2 %% 2.

(a and b) or c insteadof a and b or
c.

dict () instead of { }.

—| Australian
lational

5 University

Avoid Language Tricks

*» Don’t make use of language quirks in your code.
*» Example: operator chaining.

>>> 1 == 2

False

>>> False 1s not True
True

>>> 1 == 2 1s not True

227

Australian
lational

5 University

Design test cases for the following function,
regardless of how it is implemented:

def hamming._distance(x, y):
"""Compute the Hamming distance between two sequences x and y
of the same length, defined as the number of corresponding
i—th elements in x and y that are different"""

For example:

* hamming_distance([1,4,7,9,5],[1,3,7, 2, 5])
is 2 (because they differ at index 1 and 3, but
are equal at index 0, 2 and 4)

*» hamming_distance("ACCGAT”, "CACGGA”) is 4
(because they differ at index 0, 1, 4 and 5).

Test design: considerations

*

Different sequence types: string, list, tuple.
Edge-cases: input empty string, input empty list,
output zero distance, output maximum distance.
Mixed data: e.g., [1, 2, "a", "b", "c"]
List of lists: e.g., [[1,2,31, 4, "a", []]

*

*

*

Australian
National

University

#easy cases

x=[1, 4, 7,9, 5], y=[1, 3, 7, 2, 5], out=2
x="ACCGAT", y="CACGGA", out=4

x=(1,2), y=(1,2), out=0

X=[3r 3! 2: 5: 1: 7! 6]! Y=[3: 31 5! 2: 1: 71 4’]! OUt=3

#edge cases

x=[1, y=[1, out=0

x="", y="", out=0

x=[1, 5, 21, y=[1, 5, 2], out=0

x=[3, 6, 2, 51, y=[6, 3, 5, 2], out=4
x="abcdefg", y="ABCDEFG", out=7

#difficult case: mixed data

X=[1,2,3,"a","b",”C”], y=[1,2,3,”a“,"b","C"], out=0

x=[1, "a", 13, 20, "b", 0], y=[13, "a", 1, 20, "c", O], out=3
x=[[1,2,3], 4, "x", [1, [I11, y=II1,2,3], 6, "x", ["a","b"],[]], out=2

tiona
University

Take home messages

*» Bugs are unavoidable and testing is therefore
essential for software development.

* Unit-testing: design "good” test cases that cover
space of inputs and outputs and edge-cases
and difficult cases.

* Try to write good quality code: they are easier to
debug.

