
COMP1730/COMP6730
Programming for Scientists

Testing and Defensive
Programming.

Overview

* Testing
* Defensive Programming

Overview of testing
* The purpose of testing is to detect bugs. There

are many different types of testing - load testing,
integration testing, user experience testing, etc.

* Different software systems have different testing
requirements, based on:
- Consequences of failure
- Complexity of software
- Frequency of use
- Hardware and user interactions

* Even for critical, commercially developed
software, testing gives no guarantees - e.g.
Boeing 737 Max crashes.

Unit-Testing

* We are concerned with unit-testing or functional
testing.

* Usually done at the function (or method level).
* Done by calling a function with specified

parameters (inputs) and checking that the return
value (output) is as expected, called test cases.

Good test cases
* Satisfy the assumptions.
* Simple (enough that correctness of the value

can be determined “by hand”).
* Cover the space of inputs and outputs.
* Cover branches in the code.
* We usually want to focus on edge-cases:
- Integers: 0, 1, -1, 2, ...
- float: very small (1e-308) or big (1e308)
- Sequences: empty (’’, []), length one.
- Any value that requires special treatment in

the code.

The assert Statement

* Basic usage:
assert boolean expression
assert boolean expression, "message"

* If the expression is True execution continues.
* If the expression is False an
AssertionError is raised, execution stops
and the message is printed.

* Can be used to intentially cause a run-time error
if assumptions are violated.

Example from homework 2
def test combinations():

"""This function runs a number of tests of combinations function.
If it works ok, you will see the output ("all tests passed") at
the end when you call this function; if some test fails, there will
be an error message."""
simple test cases:
assert combinations(5, 2) == 10
assert type(combinations(5, 2)) is int
assert combinations(5, 3) == 10
number of possible 5−card hands from a deck of 52 cards:
assert combinations(52, 5) == 2598960
some edge cases:
assert combinations(0, 0) == 1
assert combinations(1, 0) == 1
assert combinations(1, 1) == 1
assert combinations(100, 0) == 1
assert combinations(100, 100) == 1
print("all tests passed")

Other Testing Considerations

* Floating point precision
* Random numbers (use a seed to get

reproducable results).
* User input (isolate the user input to a function

and simulate input).
* Only use your code to generate tests for

refactoring purposes, not for testing correctness.
* Testing only guarantees your code works for

the test cases!

Defensive programming

Everyone knows that debugging is twice as
hard as writing a program in the first place.
So if you’re as clever as you can be when you
write it, how will you ever debug it?

Brian Kernighan
* Write code that is easy to read and well

documented.
- If it’s hard to understand, it’s harder to debug.

Code Quality Matters!
* A function that is hard to read is hard to debug.

def AbC(ABc):
ABC = len(ABc)
ABc = ABc[ABC−1:−ABC−1:−1]
if ABC == 0:

return 0
abC = AbC(ABc[−ABC:ABC−1:])
if ABc[−ABC] < 0:

abC += ABc[len(ABc)−ABC]
return abC

* A small function that only does one thing is
easier to test than a large function that does
many things.

Pre and Post Conditions

* assert statements allow us to ensure that only
appropriate parameters are passed as
arguments to functions. Example:
assert type(param a) == int and param a > 0

Bad practice (delayed error):
def sum of squares(n):

if n < 0:
return "error:∖ n is negative"

return (n * (n + 1) * (2 * n + 1)) // 6
m = ...
k = ...
a = sum of squares(m)
b = sum of squares(m − k)
c = sum of squares(k)
if a − b != c:

print(a, b, c)

Good practice (immediate error):
def sum of squares(n):

assert n >= 0, str(n) + " is negative"
return (n * (n + 1) * (2 * n + 1)) // 6

Explicit vs Implicit

* Make things explicit if they are unclear or could
be confusing. Even if they are working as
intended.

* return None is better than no return
statement.

* - (2 ** 2) instead of - 2 ** 2.
* (a and b) or c instead of a and b or
c.

* dict() instead of { }.

Avoid Language Tricks
* Don’t make use of language quirks in your code.
* Example: operator chaining.

>>> 1 == 2
False
>>> False is not True
True
>>> 1 == 2 is not True
???

Design test cases for the following function,
regardless of how it is implemented:
def hamming distance(x, y):

"""Compute the Hamming distance between two sequences x and y
of the same length, defined as the number of corresponding
i−th elements in x and y that are different"""

For example:
* hamming distance([1, 4, 7, 9, 5], [1, 3, 7, 2, 5])

is 2 (because they differ at index 1 and 3, but
are equal at index 0, 2 and 4)

* hamming distance(”ACCGAT”, ”CACGGA”) is 4
(because they differ at index 0, 1, 4 and 5).

Test design: considerations

* Different sequence types: string, list, tuple.
* Edge-cases: input empty string, input empty list,

output zero distance, output maximum distance.
* Mixed data: e.g., [1, 2, "a", "b", "c"]

* List of lists: e.g., [[1,2,3], 4, "a", []]

#easy cases
x=[1, 4, 7, 9, 5], y=[1, 3, 7, 2, 5], out=2
x="ACCGAT", y="CACGGA", out=4
x=(1,2), y=(1,2), out=0
x=[3, 3, 2, 5, 1, 7, 6], y=[3, 3, 5, 2, 1, 7, 4], out=3

#edge cases
x=[], y=[], out=0
x=’’, y=’’, out=0
x=[1, 5, 2], y=[1, 5, 2], out=0
x=[3, 6, 2, 5], y=[6, 3, 5, 2], out=4
x="abcdefg", y="ABCDEFG", out=7

#difficult case: mixed data
x=[1,2,3,"a","b","c"], y=[1,2,3,"a","b","c"], out=0
x=[1, "a", 13, 20, "b", 0], y=[13, "a", 1, 20, "c", 0], out=3
x=[[1,2,3], 4, "x", [], []], y=[[1,2,3], 6, "x", ["a","b"],[]], out=2

Take home messages

* Bugs are unavoidable and testing is therefore
essential for software development.

* Unit-testing: design ”good” test cases that cover
space of inputs and outputs and edge-cases
and difficult cases.

* Try to write good quality code: they are easier to
debug.

