

COMP1730/COMP6730 Programming for Scientists

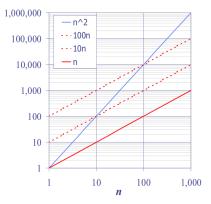
Algorithm and problem complexity

Algorithm complexity

- * The time (memory) consumed by an algorithm:
 - Counting "elementary operations" (not μ s).
 - Expressed as a function of the size of its arguments.
 - In the worst case.
- Complexity describes scaling behaviour: How much does runtime grow if the size of the arguments grow by a certain factor?
 - Understanding algorithm complexity is important when (but only when) dealing with large problems.

Big-O notation

- O(f(n)) means roughly "a function that grows (in the worst-case) at the rate of f(n), for large enough n".
- * For example,
 - $n^2 + 2n$ is $O(n^2)$
 - 100*n* is *O*(*n*)
 - 10^{12} is O(1).



(Image by Lexing Xie)

Example

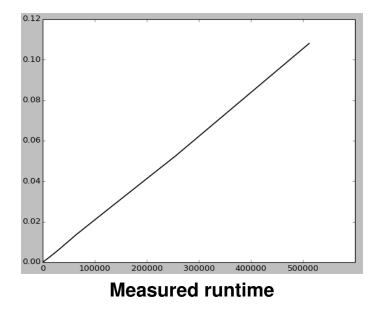
- ★ Find the greatest element ≤ x in an unsorted sequence of n elements. (For simplicity, assume some element ≤ x is in the sequence.)
- * Two approaches:
 - a) Search through the sequence; or
 - **b)** First sort the sequence, then find the greatest element $\leq x$ in a *sorted* sequence.

Searching an unsorted sequence

```
def unsorted_find(x, ulist):
 """
 search unsorted list (ulist) for largest element <= x
 """
 best = min(ulist)
 for elem in ulist:
     if elem == x:
         return elem # elem found
     elif elem < x:
         if elem > best:
             best = elem # update if larger
 return best
```


Analysis

- * Elementary operation: comparison.
 - Can be arbitrarily complex.
- * If we're lucky, ulist[0] == x.
- * Worst case?
 - ulist = $[0, 1, 2, \ldots, x 1]$
 - Compare each element with x and current value of best
- * What about min (ulist)?
- ★ f(n) = 2n, so O(n)

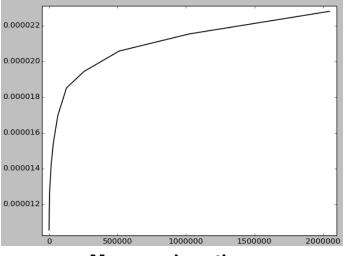


Searching a sorted sequence

```
def sorted_find(x, slist):
 search the sorted list for the largest element \leq x.
 if slist[-1] <= x:</pre>
     return slist[-1]
 lower = 0
 upper = len(slist) - 1
 # search by interval halving (binary search)
 while (upper - lower) > 1:
     middle = (lower + upper) // 2
     if slist[middle] <= x:</pre>
         lower = middle
     else:
         upper = middle
 return slist[lower]
```


Analysis

- * Loop invariant: slist[lower] <= x and x < slist[upper].</pre>
- * How many iterations of the loop?
 - Initially, upper lower = n 1.
 - The difference is halved in every iteration.
 - Can halve it at most log₂(n) times before it becomes 1.
- * $f(n) = \log_2(n) + 1$, so $O(\log(n))$.



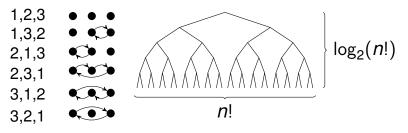
Measured runtime

Problem complexity

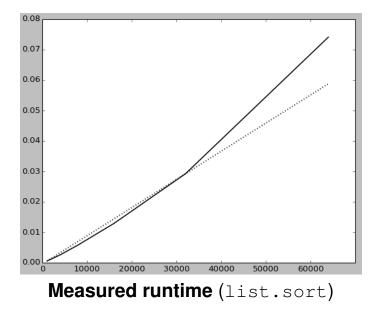
- The complexity of a problem is the time (or memory) that any algorithm must use, in the worst case, to solve the problem, as a function of the size of the arguments.
- * The hierarchy theorem: For any computable function f(n) there is a problem that requires time greater than f(n). (Analogous result for memory.)

How fast can you sort?

* Any sorting algorithm that uses only pair-wise comparisons needs $n \log(n)$ comparisons in the worst case.



* $\log_2(n!) \ge n \log(n)$ for large enough *n*.



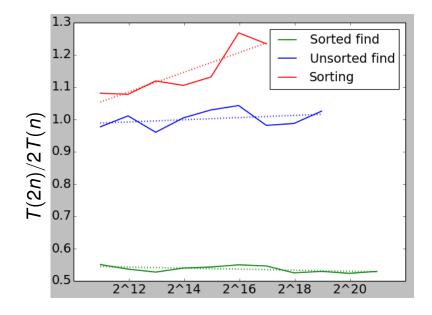
Points of comparison

- ★ Algorithm (a): O(n)
- * Algorithm (b): $n \log(n) + \log(n) = O(n \log(n))$
- If we know that the input is already sorted in our application then is O(log(n))

	<i>n</i> = 64k		<i>n</i> = 128k		<i>n</i> = 512 <i>k</i>	
Unsorted find	0.013	S	0.026	S	0.108	S
Sorted find	0.0000	17s	0.0000	18s	0.00002	S
Sorting	0.07	S	0.18	S		

Rate of growth

- * Algorithm uses T(n) time on input of size n.
- If we double the size of the input, by what factor does the runtime increase?



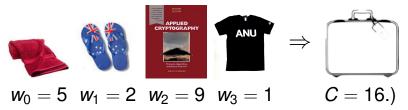
Caution

- Remember: Scaling behaviour becomes important when problems become *large*, or when they need to be solved a *many times*.
- e.g. an algorithm may work for a small test sample in a scientific pipeline, but by infeasible for a full genomic analysis.

NP-Completeness

Example

- ★ The subset sum problem: Given *n* integers *w*₁,..., *w_n*, is there a subset of them that sums to exactly *C*?
 - (Also known as the "(exact) knapsack problem":




```
def subset_sum(w, C):
 Returns True if there is a subset of a list w summing to C.
Otherwise, returns False.
 if len(w) == 0:
     return C == 0
# including w[0]
if w[0] <= C:
    if subset_sum(w[1:], C - w[0]):
         return True
# excluding w[0]
if subset_sum(w[1:], C):
     return True
 return False
```


Analysis

- Count recursive function calls (no loops, so every call does a constant max amount of work).
- * Assume argument size (n) is number of weights.
- * Worst case?
 - If the answer is False and C is less than but close to $\sum_i w_i$, almost every call makes two recursive calls.

* f(n+1) = 2f(n), f(0) = 1 means that $f(n) = 2^{n}$.

Decision problems: Finding vs. checking an answer

- Sorting a list vs. checking if it's already sorted
- checking if it's already sorted O(n)* Finding a subset of w_1, \ldots, w_n $O(2^n)$ that sums to *C* vs. checking if a sum is equal to *C* O(n)

 $O(n \log(n))$

NP-complete problems

- * A problem is **in NP** iff there is an answerchecking algorithm that runs in polynomial time $(O(n^c), c \text{ constant}).$
- * Polynomial time is considered "feasible".
- NP stands for Non-deterministic Polynomial time. "Non-deterministic" describes a brute force algorithm that would require infinite parallelism to find a solution.
- * A problem is **NP-complete** if it's in NP and *at* least as hard as every other problem in NP.

NP-complete problems

- The Boolean satisfiability problem (SAT) is to determine if a propositional logic formula can be made true by an appropriate assignment of truth values to its variables.
- It is fast to verify whether a given logical assignment makes the formula true, no essentially faster method to find a satisfying assignment is known than to try all assignments in succession.
- Cook and Levin proved that every such decision problem with a polynomial time solution can be converted to SAT and so solved as fast as SAT.

NP-complete problems

- * This class of problem is called NP-complete .
- It is a major unsolved problem in CS: we think there is no polynomial time algorithm for solving NP-complete problems, but we don't know.
- Knowing that your problem is NP-complete suggests that you should look for useful heuristic solutions to your problem.
- * (Note that this refers to worst-case time. In fact, fast heuristic algorithms for SAT have been developed that are practically useful for most inputs.)

There are many NP-complete problems...

- * Most populous intractable problem class.
 - Solving a system of *integer* linear equations.
 - The Knapsack problem.
- * https://en.wikipedia.org/wiki/List_
 of_NP-complete_problems lists many
 NP-complete problems.

Takehome message

- Time (or memory) complexity is expressed in big-O notation as a function of the input size.
- The computational (and memory) complexity is a major determinant in choosing a given algorithm or data structure for an application:
- e.g. a dictionary is (amortised) constant time lookup compared to linear time for an unsorted list and so may be preferred for some applications.