
COMP1730/COMP6730
Programming for Scientists

Algorithm and problem
complexity

Algorithm complexity
* The time (memory) consumed by an algorithm:
- Counting “elementary operations” (not 𝜇s).
- Expressed as a function of the size of its

arguments.
- In the worst case.

* Complexity describes scaling behaviour: How
much does runtime grow if the size of the
arguments grow by a certain factor?
- Understanding algorithm complexity is

important when (but only when) dealing with
large problems.

Big-O notation

* O(f (n)) means
roughly “a function
that grows (in the
worst-case) at the
rate of f (n), for large
enough n”.

* For example,
- n2 + 2n is O(n2)
- 100n is O(n)
- 1012 is O(1). (Image by Lexing Xie)

Example

* Find the greatest element ≤ x in an unsorted
sequence of n elements. (For simplicity, assume
some element ≤ x is in the sequence.)

* Two approaches:
a) Search through the sequence; or
b) First sort the sequence, then find the greatest

element ≤ x in a sorted sequence.

Searching an unsorted sequence

def unsorted find(x, ulist):
"""
search unsorted list (ulist) for largest element <= x
"""
best = min(ulist)
for elem in ulist:

if elem == x:
return elem # elem found

elif elem < x:
if elem > best:

best = elem # update if larger
return best

Analysis
* Elementary operation: comparison.
- Can be arbitrarily complex.

* If we’re lucky, ulist[0] == x.
* Worst case?
- ulist = [0, 1, 2, ..., x - 1]

- Compare each element with x and current
value of best

* What about min(ulist)?

* f (n) = 2n, so O(n)

Measured runtime

Searching a sorted sequence
def sorted find(x, slist):

"""
search the sorted list for the largest element <= x.
"""
if slist[−1] <= x:

return slist[−1]
lower = 0
upper = len(slist) − 1
search by interval halving (binary search)
while (upper − lower) > 1:

middle = (lower + upper) // 2
if slist[middle] <= x:

lower = middle
else:

upper = middle
return slist[lower]

Analysis

* Loop invariant: slist[lower] <= x and
x < slist[upper].

* How many iterations of the loop?
- Initially, upper - lower = n − 1.
- The difference is halved in every iteration.
- Can halve it at most log2(n) times before it

becomes 1.
* f (n) = log2(n) + 1, so O(log(n)).

Measured runtime

Problem complexity

* The complexity of a problem is the time (or
memory) that any algorithm must use, in the
worst case, to solve the problem, as a function
of the size of the arguments.

* The hierarchy theorem: For any computable
function f (n) there is a problem that requires
time greater than f (n). (Analogous result for
memory.)

How fast can you sort?

* Any sorting algorithm that uses only pair-wise
comparisons needs n log(n) comparisons in the
worst case.

1,2,3
1,3,2
2,1,3
2,3,1
3,1,2
3,2,1 n!

log2(n!)

* log2(n!) ≥ n log(n) for large enough n.

Measured runtime (list.sort)

Points of comparison
* Algorithm (a): O(n)
* Algorithm (b): n log(n) + log(n) = O(n log(n))
* If we know that the input is already sorted in our

application then is O(log(n))

n = 64k n = 128k n = 512k

Unsorted
find

0.013 s 0.026 s 0.108 s

Sorted find 0.000017s 0.000018s 0.00002 s

Sorting 0.07 s 0.18 s

Rate of growth

* Algorithm uses T (n) time on input of size n.
* If we double the size of the input, by what factor

does the runtime increase?

T
(2

n)
/2

T
(n
)

Caution

* Remember: Scaling behaviour becomes
important when problems become large, or
when they need to be solved a many times.

* e.g. an algorithm may work for a small test
sample in a scientific pipeline, but by infeasible
for a full genomic analysis.

NP-Completeness

Example

* The subset sum problem: Given n integers
w1, . . . ,wn, is there a subset of them that sums
to exactly C?

(Also known as the “(exact) knapsack problem”:

⇒

w0 = 5 w1 = 2 w2 = 9 w3 = 1 C = 16.)

def subset sum(w, C):
"""
Returns True if there is a subset of a list w summing to C.
Otherwise, returns False.
"""
if len(w) == 0:

return C == 0
including w[0]
if w[0] <= C:

if subset sum(w[1:], C − w[0]):
return True

excluding w[0]
if subset sum(w[1:], C):

return True
return False

Analysis

* Count recursive function calls (no loops, so
every call does a constant max amount of work).

* Assume argument size (n) is number of weights.
* Worst case?
- If the answer is False and C is less than but

close to
∑︀

i wi , almost every call makes two
recursive calls.

* f (n + 1) = 2f (n), f (0) = 1 means that f (n) = 2n.

Decision problems: Finding vs.
checking an answer

* Sorting a list vs. O(n log(n))
checking if it’s already sorted O(n)

* Finding a subset of w1, . . . ,wn O(2n)
that sums to C vs.
checking if a sum is equal to C O(n)

NP-complete problems
* A problem is in NP iff there is an answer-

checking algorithm that runs in polynomial time
(O(nc), c constant).

* Polynomial time is considered “feasible”.
* NP stands for Non-deterministic Polynomial

time. “Non-deterministic” describes a brute
force algorithm that would require infinite
parallelism to find a solution.

* A problem is NP-complete if it’s in NP and at
least as hard as every other problem in NP.

NP-complete problems
* The Boolean satisfiability problem (SAT) is to

determine if a propositional logic formula can be
made true by an appropriate assignment of truth
values to its variables.

* It is fast to verify whether a given logical
assignment makes the formula true, no
essentially faster method to find a satisfying
assignment is known than to try all assignments
in succession.

* Cook and Levin proved that every such decision
problem with a polynomial time solution can be
converted to SAT and so solved as fast as SAT.

NP-complete problems
* This class of problem is called NP-complete .
* It is a major unsolved problem in CS: we think

there is no polynomial time algorithm for solving
NP-complete problems, but we don’t know.

* Knowing that your problem is NP-complete
suggests that you should look for useful
heuristic solutions to your problem.

* (Note that this refers to worst-case time. In fact,
fast heuristic algorithms for SAT have been
developed that are practically useful for most
inputs.)

There are many NP-complete
problems...

* Most populous intractable problem class.
- Solving a system of integer linear equations.
- The Knapsack problem.

* https://en.wikipedia.org/wiki/List_
of_NP-complete_problems lists many
NP-complete problems.

https://en.wikipedia.org/wiki/List_of_NP-complete_problems
https://en.wikipedia.org/wiki/List_of_NP-complete_problems

Takehome message

* Time (or memory) complexity is expressed in
big-O notation as a function of the input size.

* The computational (and memory) complexity is
a major determinant in choosing a given
algorithm or data structure for an application:

* e.g. a dictionary is (amortised) constant time
lookup compared to linear time for an unsorted
list and so may be preferred for some
applications.

