
COMP1730/COMP6730
Programming for Scientists

Control, part 1: Branching



Outline

* Program control flow
* Branching: The if statement
* Recursion



Program control flow



Sequential program execution

statement
statement
statement
statement
...

* The python interpreter always executes
instructions (statements) one at a time in
sequence.



statement
a function()

def a function():
statement
statement
return statement

statement
...

* Function calls “insert” a function body into this
sequence, but the sequence of instructions
remains invariably the same.



Branching program flow
if test:

statement
statement
...

else:
statement
statement
...

statement
...

OR

if test:
statement
statement
...

else:
statement
statement
...

statement
...

* Depending on the outcome of a test, the
program executes one of two alternative
branches.



Problem: Stack the red boxes

* Two of three boxes
on the shelf are red,
and one is not; stack
the two red boxes
together.

* Write a program that
works wherever the
red boxes are.



* robot.sense color() returns the color of
the box in front of the sensor, or no color (’’) if
no box detected.

>>> robot.sense color()
’red’

>>> robot.sense color()
’’

- Note that the color name is a string (in ’’)
- The box sensor is one step right of the gripper.



Algorithm idea
is the box red?

no

move right twice

is the box red?

no yes

yes



The if statement
if test expression :

block
statement(s)

1. Evaluate the test expression (converting the
value to type bool if necessary).

2. If the value is True, execute the block, then
continue with the following statements (if any).

2. If the value is False, skip the block and go
straight to the following statements (if any).



The if statement, with else
if test expression :

block 1
else:

block 2
statement(s)

1. Evaluate the test expression.
2. If the value is True, execute block #1, then

following statements (if any).
2. If the value is False, execute block #2, then

following statements (if any).



Truth values (reminder)
* Type bool has two values: False and True.
* Boolean values are returned by comparison

operators (==, !=, <, >, <=, >=) and a few more.
* Ordering comparisons can be applied to pairs of

values of the same type, for (almost) any type.
* Warning #1: Where a truth value is required,

python automatically converts any value to type
bool, but it may not be what you expected.

* Warning #2: Don’t use arithmetic operators (+,
-, *, etc.) on truth values.



Blocks (reminder)
* A block is a (sub-)sequence of statements.
* A block must contain at least one statement!
* In python, a block is delimited by indentation.
- All statements in the block must be preceded

by the same number of spaces/tabs
(standard is 4 spaces).

- The indentation depth of the block inside an
if (and else) statement must be greater than
that of the if (else).

* A block can include nested block (if’s, etc).



Blocks: A side remark
* (Almost) Every programming language has a

way of grouping statements into blocks.
- For example, in C, Java and many other:

if (expression) {
block
}

- or in Ada or Fortran (post -77):
if expression then
block

end if

* The use of indentation to define blocks is a
python peculiarity.



def print grade(mark):
if mark >= 80:

print("HD")
if mark >= 70:

print("D")
if mark >= 60:

print("Cr")
if mark >= 50:

print("P")
if mark < 50:

print("Fail")

* What will print grade(90) print?



Boolean operators
* The operators and, or, and not combine truth

values:
a and b True iff a and b both evaluate to

True.
a or b True iff at least one of a and b

evaluates to True.
not a True iff a evaluates to False.

* Boolean operators have lower precedence than
comparison operators (which have lower
precedence than arithmetic operators).



def print grade(mark):
if mark >= 80:

print("HD")
if mark < 80 and mark >= 70:

print("D")
if mark < 70 and mark >= 60:

print("Cr")
if mark < 60 and mark >= 50:

print("P")
if mark < 50:

print("Fail")



Recursion



Recursion
* The body of a function can contain function

calls, including calls to the same function.
- This is known as recursion.

* The function body must have a branching
statement, such that a recursive call does not
always take place (“base case”); otherwise,
recursion never ends.

* Recursion is a way to think about solving a
problem: how to reduce it to a simpler instance
of itself?



Problem: Counting boxes

* How many boxes
are in the stack
from the box in
front of the
sensor and up?

* If robot.sense color() == ’’, then the
answer is zero.

* Else, one plus what the answer would be if the
lift was one level up.



def count boxes():
if robot.sense color() == ’’:

return 0
else:

robot.lift up()
num above = count boxes()
robot.lift down()
return 1 + num above



The call stack (reminder)
* When a function call begins, the current

instruction of the caller function is put “on a
stack”.

* The called function ends when it encounters a
return statement, or reaches the end of the
block.

* The interpreter then returns to the next
instruction after where the function was called.

* The call stack keeps track of where to come
back to after each current function call.



1 ans = count boxes()

2 if robot.sense color() == ’’:

3 robot.lift up()

4 num above = count boxes()

5 if robot.sense color() == ’’:

6 return 0

7 num above = 0

8 robot.lift down()

9 return num above + 1

10 ans = 1



Problem: Solving an equation

* Solve f (x) = 0.
* For example, find r such

that r2π = 1.

* The interval-halving
algorithm.



* Assumption: f (x) is monotone increasing and
crosses 0 in the interval [l ,u].

* Idea:
- Find the middle of the interval, m:
- if f (m) ≈ 0, we’re done;
- if f (m) < 0, the solution lies in [m,u];
- if f (m) > 0, the solution lies in [l ,m].

* Don’t compare
floats with ==.



Take home message

* Branching (if) statement allows a program to
alter the sequence of the statements depending
on some condition.

* Recursion is used to solve the current problem
by looking at a simpler version of the same
problem.

* Recursive calls must occur in a branching
statement so that it does not run forever.


