
COMP1730/COMP6730
Programming for Scientists

Control, part 2: Iteration

Outline

* Iteration: The while statement with examples
* Common problems with loops.

Program control flow

Images from Punch & Enbody

Iteration
while test:

statement
statement
...

statement
...

UNTIL

while test:
statement
statement
...

statement
...

* Iteration repeats a block of statements.
* A test is evaluated before each iteration, and the

block executed (again) if it is true.

Iteration statements in python
* The while loop repeats a block of statements

as long as a condition is true.

* The for loop iterates through the elements of a
collection or sequence (data structure) and
executes a block once for each element. So for
loops are most useful for looping a defined
number of times, whereas a while statement is
best for looping an undefined number of times.
- See for loop examples.py for details on the

use of for loops.

The while loop statement

while test expression :
block

statement(s)

1. Evaluate test expression (converting the
value to type bool if necessary).

2. If the value is True, execute the block
once, then go back to 1.

3. If the value is False, skip the block and
go on to the following statements (if any). Image from Punch

& Enbody

blocks (reminder)
* A block is a (sub-)sequence of statements.
* A block must contain at least one statement!
* In python, a block is delimited by indentation.
- All statements in the block must be preceded

by the same number of spaces/tabs
(standard is 4 spaces).

- The indentation depth of the block following if
/ else / while : must be greater than that of
the statement.

* A block can include nested blocks (if’s, etc).

Variable assignment (reminder)
* A variable is a name that is associated with a

value in the program.
* Variable assignment is a statement:
var name = expression

- Note: Equality is written == (two =’s).
* A name–value association is created by the first

assignment to the name;
* subsequent assignments to the same name

change the associated value.

(From pythontutor.com)

* For example,
an int = 3 + 2
an int = an int * 5

1. Evaluate expression 3 + 2 to 5.
2. Store value 5 with name an int

3. Evaluate expression an int * 5 to 25.
4. Store value 25 with name an int, replacing the

previous associated value.

pythontutor.com

Problem: Counting boxes

* How many boxes
are in the stack
from the box in
front of the
sensor and up?

* While robot.sense color() != ’’, move
the lift up, and count how many times; then
move the lift down that many times.

def count boxes():
num boxes = 0
while robot.sense color() != ’’:

num boxes = num boxes + 1
robot.lift up()

steps to go = num boxes
while steps to go > 0:

robot.lift down()
steps to go = steps to go - 1

return num boxes

Problem: Solving an equation

* Solve f (x) = 0.
* The interval-halving

algorithm:
- if f (m) ≈ 0, return m;
- if f (m) < 0, set l to m;
- if f (m) > 0, set u to m.

return from a loop
* A loop (while or for) can appear in a function

block, and a return statement can appear in
the block of the loop.
def find box(color):

while robot.sense color() != ’’:
if robot.sense color() == color:

return True
robot.lift up()

return False

* Executing the return statement ends the
function call, and therefore also exits the loop.

* (also read up on the break and continue
statements)

Problem: Greatest common divisor

* For two positive integers a and b, find the
largest integer that divides a and b.

* Euclid’s algorithm: Assuming a ≥ b,
- gcd(a,b) = b if b divides a;
- gcd(a,b) = gcd(b,a%b), otherwise.

Bounded loops using for
* The iteration examples above loop an indefinite

number of times (e.g. until convergence).
* It is often the case that we want to loop a fixed

number of times.
* This can be done using while and a “loop

variable”
j = 0 # initialise loop variable to 0
while j < 10:

print(j)
j = j + 1

Bounded loops using for
* But a for statement is designed for bounded

loops and is shorter as it implicitly implements
the loop variable
for i in range(0,10):

print(i)

* A for statement is also widely used to iterate
over the contents of a list or other sequence
data type (covered next lecture).
a = ["one","two","three"] # list of strings
for c in a:

print(c)

Writing and debugging loops

Repeat while condition is true

* A while loop repeats as long as the condition
(test expression) evaluates to True.

* If the condition is initially False, the loop
executes zero times.

* If no variable involved in the condition is
changed during execution of the block, the value
of the condition will not change, and the loop will
continue forever.

Common problems with while
loops
* Loop never starts: the control variable is not

initialised correctly.

find smallest non-trivial
divisor of num:
i = 1
while num % i != 0:

i = i + 1

- num % 1 is always 0!

Common problems with while
loops
* Loop never ends: the control variable is not

updated in the loop block, or not updated in a
way that can make the condition false.

i = 0
while i != stop num:

i = i + step size

- What if stop num < 0?
- or step size < 0?
- or step size does not divide stop num?

Take home message

* Branching (if) and iteration (while loop) are
two main control mechanisms to change the
sequential flow of a program.

* Some (but not all) recursions can be re-written
as iterations to solve the same problem (and
vice versa).

* Make sure that the test condition will evaluate to
False at some point. Otherwise you will enter
an infinite loop!

