
COMP1730/COMP6730
Programming for Scientists

Control, part 3: Dynamic
programming



Outline

* Dynamic programming
* (DNA) sequence alignment



Algorithm design paradigms
* When looking at the algorithms designed to

efficiently solve many optimisation and search
problems, certain general approaches can be
identified.

* These are called algorithm design paradigms. In
this lecture we will cover one common
approach: Dynamic programming

* (see https://en.wikipedia.org/wiki/
Algorithmic_paradigm)

* We will see its application in the problem of
(DNA) sequence alignment

https://en.wikipedia.org/wiki/Algorithmic_paradigm
https://en.wikipedia.org/wiki/Algorithmic_paradigm


Dynamic programming

Dynamic programming is an approach that can
often (not always) be used to efficiently solve
certain optimisation problems where:
* the problem can be broken down into

sub-problems, such that-
* if the subproblems could be solved, then the

partial solutions can be efficiently combined into
a full solution .



Example: Counting selections
* Compute the number of ways to choose k

elements from a set of n, C(n, k), aka the
binomial coefficient.

2 from {�,4,©}

2 from {4,©}: 1

� out

1 from {4,©}

1 from {©}: 1

4 out

0 from {©}: 1

4 in

� in



* Simple recursive formulation:

C(n, k) = C(n − 1, k) + C(n − 1, k − 1)
C(n,0) = 1
C(n,n) = 1

* Simple recursive implementation:
def choices(n, k):

if k == n or k == 0:
return 1

else:
return choices(n − 1, k) + choices(n − 1, k − 1)

* This brute-force solution is O(2n). How to
implement this efficiently?



* Recursive calls by choices(5, 3):

(5,3)

(4,3)

(3,3) (3,2)

(2,2) (2,1)

(1,1) (1,0)

(4,2)

(3,2)

(2,2) (2,1)

(1,1) (1,0)

(3,1)

(2,1)

(1,1) (1,0)

(2,0)

* Note repeated work.



* The idea of dynamic programming is to store
answers to (recursively defined) subproblems,
to avoid computing them repeatedly.
- Trade memory for computation time.
- solve the base cases first;
- then, repeatedly, solve larger problems using

subproblems which already solved;
- until the whole problem is solved.

* Need a way to index subproblems- we will use a
2D table.



* Array of subproblems:

(5,0)(4,0)(3,0)(2,0)(1,0)(0,0)

(5,1)(4,1)(3,1)(2,1)(1,1)

(5,2)(4,2)(3,2)(2,2)

(5,3)(4,3)(3,3)

n

k



* With base cases solved:

(5,0)
= 1

(4,0)
= 1

(3,0)
= 1

(2,0)
= 1

(1,0)
= 1

(0,0)
= 1

(5,1)(4,1)(3,1)(2,1)(1,1)
= 1

(5,2)(4,2)(3,2)(2,2)
= 1

(5,3)(4,3)(3,3)
= 1

n

k



* Complete:

(5,0)
= 1

(4,0)
= 1

(3,0)
= 1

(2,0)
= 1

(1,0)
= 1

(0,0)
= 1

(5,1)
= 5

(4,1)
= 4

(3,1)
= 3

(2,1)
= 2

(1,1)
= 1

(5,2)
= 10

(4,2)
= 6

(3,2)
= 3

(2,2)
= 1

(5,3)
= 10

(4,3)
= 4

(3,3)
= 1

n

k



Computational complexity

* The dynamic programming solution has time
complexity O(n × k )

* (Note that the table has n × k entries and we
need to scan half of it to complete it)

* (Note: this table was first published by Plaise
Pascal in 1665).



Outline

* Dynamic programming
* (DNA) pairwise sequence alignment



BRCA 1 gene
CTTAGCGGTAGCCCCTTGGTTTCCGTGGCAACGGAAAAGCGCGGGAATTACAGATAAATTAAAACTGCGACTGCGCGGCGTGAGCTCGC
TGAGACTTCCTGGACGGGGGACAGGCTGTGGGGTTTCTCAGATAACTGGGCCCCTGCGCTCAGGAGGCCTTCACCCTCTGCTCTGGTTC
ATTGGAACAGAAAGAAATGGATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAATGTCATTAATGCTATGCAGAAAATCTTAGAGTGTC
CCATCTGTCTGGAGTTGATCAAGGAACCTGTCTCCACAAAGTGTGACCACATATTTTGCAAATTTTGCATGCTGAAACTTCTCAACCAG
AAGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTGA
AGAGCTATTGAAAATCATTTGTGCTTTTCAGCTTGACACAGGTTTGGAGTATGCAAACAGCTATAATTTTGCAAAAAAGGAAAATAACT
CTCCTGAACATCTAAAAGATGAAGTTTCTATCATCCAAAGTATGGGCTACAGAAACCGTGCCAAAAGACTTCTACAGAGTGAACCCGAA
AATCCTTCCTTGGAAACCAGTCTCAGTGTCCAACTCTCTAACCTTGGAACTGTGAGAACTCTGAGGACAAAGCAGCGGATACAACCTCA
AAAGACGTCTGTCTACATTGAATTGGGATCTGATTCTTCTGAAGATACCGTTAATAAGGCAACTTATTGCAGTGTGGGAGATCAAGAAT
TGTTACAAATCACCCCTCAAGGAACCAGGGATGAAATCAGTTTGGATTCTGCAAAAAAGGCTGCTTGTGAATTTTCTGAGACGGATGTA
ACAAATACTGAACATCATCAACCCAGTAATAATGATTTGAACACCACTGAGAAGCGTGCAGCTGAGAGGCATCCAGAAAAGTATCAGGG
TGAAGCAGCATCTGGGTGTGAGAGTGAAACAAGCGTCTCTGAAGACTGCTCAGGGCTATCCTCTCAGAGTGACATTTTAACCACTCAGC
AGAGGGATACCATGCAACATAACCTGATAAAGCTCCAGCAGGAAATGGCTGAACTAGAAGCTGTGTTAGAACAGCATGGGAGCCAGCCT
TCTAACAGCTACCCTTCCATCATAAGTGACTCTTCTGCCCTTGAGGACCTGCGAAATCCAGAACAAAGCACATCAGAAAAAGCAGTATT
AACTTCACAGAAAAGTAGTGAATACCCTATAAGCCAGAATCCAGAAGGCCTTTCTGCTGACAAGTTTGAGGTGTCTGCAGATAGTTCTA
CCAGTAAAAATAAAGAACCAGGAGTGGAAAGGTCATCCCCTTCTAAATGCCCATCATTAGATGATAGGTGGTACATGCACAGTTGCTCT
GGGAGTCTTCAGAATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTTGTTGATGTGGAGGAGCAACAGCTGGAAGAGTCTGGGCC
ACACGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATCTAGAGGGAACCCCTTACCTGGAATCTGGAATCAGCCTCTTCTCTGATG
ACCCTGAATCTGATCCTTCTGAAGACAGAGCCCCAGAGTCAGCTCGTGTTGGCAACATACCATCTTCAACCTCTGCATTGAAAGTTCCC
CAATTGAAAGTTGCAGAATCTGCCCAGAGTCCAGCTGCTGCTCATACTACTGATACTGCTGGGTATAATGCAATGGAAGAAAGTGTGAG
CAGGGAGAAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACAAAAGAATGTCCATGGTGGTGTCTGGCCTGACCCCAGAAGAATTTA
TGCTCGTGTACAAGTTTGCCAGAAAACACCACATCACTTTAACTAATCTAATTACTGAAGAGACTACTCATGTTGTTATGAAAACAGAT
GCTGAGTTTGTGTGTGAACGGACACTGAAATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAGTTAGCTATTTCTGGGTGACCCAGTC
TATTAAAGAAAGAAAAATGCTGAATGAG



Biological sequence data
* DNA and RNA.
* Protein amino acid

sequence.
* Arrangement of genes in

chromosome / genome.
* Human DNA is ∼3 billion bp.
* BRCA 1 & 2 genes are ∼80kb (incl. exons).
* DNA sequencer reads are 100–2k bases.
* Across evolutionary time, both mutations and

small insertions and deletions (indels) can
occur.



* Alignment

* Assembly

* Mapping



Edit distance
* We need a measure of sequence similarity we

can optimise. Typically, we will assign different
scores to matches, mismatches, and indels at
each position.

* In this example we will use a simple edit
distance: Minimum (weighted) number of “edit
operations” needed to transform one sequence
into the other.

* Levenshtein (string edit) distance:
- insert a character (gap in other string);
- delete a character (gap in this string);
- substitute a character.



* distance(GAATTCA, GGATCGA) = 3.
* Edits:

G A A T T C A
(subst. 1 G) ⇒ G G A T T C A

(del 4) ⇒ G G A T C A
(ins 5 G) ⇒ G G A T C G A

* Alignment:

G A A T T C A
G G A T C G A

+1 +1 +1



Recursive formulation

dist(s,’’) = len(s) ∗ wgap

dist(’’, t) = len(t) ∗ wgap

dist(s + x , t + y) =

min


dist(s, t) +

{
0 ifx = y
wsub otherwise

dist(s + x , t) + wgap
dist(s, t + y) + wgap

* In example, wsub = wgap = 1.



def align(s, t, w gap = 1, w sub = 1):
"""

Align two sequences s and t with gap cost
w gap and substitution cost w gap
Returns the edit distance between 2 sequences

"""
if len(s) == 0:

return len(t) ∗ w gap
elif len(t) == 0:

return len(s) ∗ w gap
else:

if s[−1] == t[−1]:
d1 = align(s[:−1], t[:−1])

else:
d1 = align(s[:−1], t[:−1]) + w sub

d2 = align(s, t[:−1]) + w gap
d3 = align(s[:−1], t) + w gap
return min(d1, d2, d3)



Dynamic programming formulation

* We will use a table with bases of one sequence
indexing rows, and bases of other sequence
indexing columns.

* Each table position [i, j] will then be updated
to store the minimum edit distance between the
subsequences from 0 to i and 0 to j.

* The minimum edit distance between the full
sequences can then be read from the bottom
right position of the table.



29

Dynamic programming: Pairwise sequence alignment 

A. GLOBAL alignment

Match score = +1

Mismatch score = 0

Gap penalty = -1

Score(i,j) = max
(i-1,j-1) + match/mismatch = diagonal move

(i-1,j) - gap penalty = horizontal move

(i,j-1) - gap penalty = vertical move



Dynamic programming formulation

* Note that in this example we only return the edit
distance of the optimal alignment of the full
sequences, we do not return the actual optimal
alignment.

* This can be efficiently calculated by a
back-trace from the bottom right position, but we
do not discuss that in this simple example.



Dynamic programming formulation

* How to index subproblems?
- Each call aligns two sequence prefixes.
- (i , j): align(s[:i], t[:j]).

* Base cases?
- One sequence is empty (i = 0 or j = 0).

* Update: min of (i − 1, j − 1) (plus subst. weight if
s[i-1] != t[j-1]), (i − 1, j) plus gap
weight, and (i , j − 1) plus gap weight.



G C A T A

0 1 2 3 4 5

T

G

C

T

A

1

2

3

4

5

1 2 · · ·

1 2 · · ·

2 1 2 · · ·

· · · 2 · · ·

· · · 2



Time complexity

O(n2) as n by n table needs to be scanned once.
Naive approach would be exponential time.



Summary

Dynamic programming is one common algorithm
design paradigm that has many applications in
science and engineering. It was first applied to the
key problem of pairwise sequence alignment by
Needleman-Wunsch and Smith-Waterman. In
computational biology it is used for pairwise
sequence alignment, RNA secondary structure
determination and other applications



Summary

In general, it can be applied for optimisation
problems where:
* The problem can be broken into subproblems,

such that
* the subproblems can be combined efficiently to

give the solution to the full problem


