
COMP1730/COMP6730
Programming for Scientists

Data: Values, types and
expressions.

Announcements

* Read updates on the news forum!
* Complete the Demographic Information

Questionnaire.
* Labs start this week:
- See Wattle for Lab allocations
- If on-campus, log in to STREAMS.
- Sign up activity on Wattle if you didn’t fill in

survey or want to change to a different lab
(with space)

Announcements

* Homework 1:
- due Monday next week at 9am

Lecture outline

* Data and data types.
* Expressions: computing values.
* Variables: remembering values.

What is “data”?

* Sequenced genomes.
* A time series of total rainfall in

Canberra for the month of June
since 1971.

* An elevation map of Australia.

* Most (scientific) applications of computing
involve summarising or deriving information
from data.

Example: Data analysis

* In 2020, enrolment in COMP1730/6730, at its
peak, was 556 students. In 2021, the enrolment
was 506 students. How big an increase, in
percent, is this?

* The increase is: 506 - 556

* as a fraction of last
year’s number: (506 - 556) / 556

* in percent: ((506 - 556) / 556) * 100

Expressions
* ((506 - 556) / 556) * 100 is an

expression;
* it evaluates to -8.992805755395683;
* 506, 556, 100 and -8.992805755395683 are

all values.

* In interactive mode, the python interpreter will
print the result of evaluating an expression:
>>> ((506 - 556) / 556) * 100
-8.992805755395683

(with one exception, which we’ll see later).

python syntax (recap)
* A python program is a sequence of statements:
- import a module;
- function definition;
- assignment statement;
- function statement;
- Every function call is also an expression.

- ...and more we’ll see later.
* Comment: # to end-of-line.
* Whitespace:
- end-of-line ends statement (except for function

definition, which ends at the end of the block);
- indentation defines extent of a (function) block.

python expressions
* Expressions are built up of:
- constants (“literals”);
- variables;
- operators; and
- function calls.

* When an expression is executed, it evaluates to
a value (a.k.a. the return value).

* Expressions can act as statements (the return
value is ignored), but statements cannot act as
expressions.

Continuation
* end-of-line marks the end of a statement.
* Except that,
- adding a “\” at the end makes the statement

continue onto the next line, e.g.,
(2 ** 0) + (2 ** 1) + (2 ** 2) \
+ (2 ** 3) + (2 ** 4)

- an expression enclosed in parentheses
continues to the closing parenthesis, e.g.,
math.sqrt((x2 - x1) ** 2 +

(y2 - y1) ** 2)

Values and Types

Every value has a type

* Value (data) types in python:
- Integers (type int)
- Floating-point numbers (type float)
- Text (a.k.a. “string”, type str)
- Truth values (type bool)
- ...and many more we’ll see later.

* Types determine what we can do with values
(and sometimes what the result is).

* The type function tells us the type of a value:
>>> type(2)
<class ’int’>
>>> type(2 / 3)
<class ’float’>
>>> type("zero")
<class ’str’>
>>> type("1")
<class ’str’>
>>> type(1 < 0)
<class ’bool’>

Numeric types
* int types represent the mathematical integers

(positive and negative whole numbers) (0, 1, 2,
−1, −17, 4096, . . .).

* Values of type int have no inherent size limit in
python.
>>> 2 ** (2 ** 2)
16
>>> 2 ** (2 ** (2 ** 2))
65536
>>> 2 ** (2 ** (2 ** (2 ** 2)))
...

* Note: Can’t use commas to “format” integers
(must write 1282736, not 1,282,736).

* Floating-point numbers (type float)
approximate the mathematical real numbers.

* Values of type float have limited range and
limited precision.
- Min/max value: ±1.79 · 10308.
- Smallest non-zero value: 2.22 · 10−308.
- Smallest value > 1: 1 + 2.22 · 10−16.
(These are typical limits; actual limits depend on
the python implementation.)

* Type float also has special values ± inf
(infinity) and nan (not a number).

* More about floating-point numbers and their
limitations in a coming lecture.

* Every constant (literal) with a decimal point
represents a float:
>>> type(1.5 - 0.5)
<class ’float’>
>>> type(1.0)
<class ’float’>

* The result of division is always a float:
>>> type(4 / 2)
<class ’float’>

* floats can be written (and are sometimes
printed) in “scientific notation”:
- 2.99e8 means 2.99 · 108.
- 6.626e-34 means 6.626 · 10−34

- 1e308 means 1 · 10308.

Strings
* Strings (type str) represent text.
* A string literal is enclosed in single or double

quote marks:
>>> "Hello world"
'Hello world'
>>> '4" long'
'4" long'

- A string can contain other types of quote
mark, but not the one used to delimit it.

* More about strings in a coming lecture.

Type conversion

* Explicit conversions use the type name like a
function:
>>> int(2.0)
>>> float(" -1.05")
>>> str(0.75 * 1.75)

* Conversion from str to number only works if
the string contains (only) a numeric literal.

* Conversion from int to float is automatic.
- E.g., int times float becomes a float.

Expressions: Operators and
Functions

Numeric operators in python

+, -, *, / standard arithmetic

** power (x ** n means xn)
// floor division
% remainder

* Some operators can be applied also to values of
other (non-numeric) types, but with a different
meaning (this is called “operator overloading”).

* We’ll see more operators later in the course.

Precedence

* There is an order of precedence on operators,
that determines how an expression is read:
- 2 * 3 - 1 means (2 * 3) - 1, not 2 * (3 - 1).
- -1 ** 5 means -(1 ** 5), not (-1) ** 5.

* Operators with equal precedence associate left:
- d/2*pi means (d/2)*pi, not d/(2*pi)

* ...except exponentiation, which associates right.
* Whenever it is not obvious, use parentheses to

make it clear.

Math functions
* The math module provides standard math

functions, such as square root, logarithm,
trigonometric functions, etc.
>>> import math
>>> help(math) # read documentation
...
>>> math.sqrt(3 ** 2 + 4 ** 2)
5.0

* Almost all math functions take and return values
of type float.

Comparison operators
<, >, <=, >= ordering (strict and non-strict)
== equality (note double ’=’ sign)
!= not equal

* Can compare two values of the same type (for
almost any type).

* Comparisons return a truth value (type bool),
which is either True or False.

* Caution: Conversion from any type to type bool
happens automatically, but the result may not be
what you expect.

Variables

Variables

* A variable is a name that is associated with a
value in the program.
- The python interpreter stores name–value

associations in a namespace.
(More about namespaces later in the course.)

* A variable can be an expression: evaluating it
returns the associated value.

* A name–value association is created by the first
assignment to the name.

Valid names in python (reminder)

* A (function or variable) name in python may
contain letters, numbers and underscores (),
but must begin with a letter or undescore.

* Reserved words cannot be used as names.
* Names are case sensitive: upper and lower

case letters are not the same.
- Length Of Rope and length of rope are

different names.

Variable assignment

* A variable assignment is written
var name = expression

- Reminder: Equality is written == (two =’s).
- Assignment is a statement.

* When executing an assignment, the interpreter
1. evaluates the right-hand side expression;
2. associates the left-hand side name with the

resulting value.

Programming problem

* Triangulation:
Given the distance
AB (the baseline)
and the angles to a
common landmark
C, calculate a new
baseline

BC = AB
sinα

sin(α + β)

α

β

A

B

C γ
δ

D
ε φ

E

The print function

* print prints text to the console:
>>> print("The answer is:", 42)
The answer is: 42

- Non-text arguments are converted to type str
before printing.

- print takes a variable number of arguments,
and prints them all followed by a newline.

* Print the result, and intermediate steps, when a
program is run in script mode.

