
COMP1730/COMP6730
Programming for Scientists

Data science

Data analysis

* Representing tables
* Reading data files
* Working with data:

selecting, visualising
* Interpretation

Working example

COVID-19 cases until 25th March 2022

Data files
* Many data file formats (e.g., excel, csv, json,

binary). We’ll use the following csv file.

Which data type can we use to represent tables?

Representing tables
* Lists are 1-dimensional, but a list can contain

values of any type, including lists.
* A table can be stored as a list of lists, by row, for

example:
data[i] # i:th row
data[i][j] # j:th column of i:th row

* Indexing (and slicing) are operators
* Indexing (and slicing) associate to the left:

data[i][j] == (data[i])[j]

* (later we will cover pandas.DataFrame which is
a higher level data structure for data processing)

Reading data files

* We will use a python module that helps with
reading the file format:

import csv
with open("filename.csv") as csvfile:

reader = csv.reader(csvfile)
next(reader) # skip the header
data = [row for row in reader]

* More about (reading and writing) files later in
the course.

List comprehension
* Typically we will initialise a list variable with data

when created:
first col = []
for row in data:

first col.append(row[0])

* Python offers a shorter syntax for this called a
list comprehension which creates a list by
evaluating an expression for each value in an
iterable collection (e.g., a sequence) using
syntax:
[expression for item in a sequence]

* Example: selecting columns of the table
first col = [row[0] for row in data]
last two cols = [row[−2:] for row in data]

Conditional list comprehension

* Syntax:
[expression for item in a sequence if boolean expression]

* Example: select rows where column-1 is > 10
sel rows = [row for row in data if int(row[1]) > 10]

* Equivalent to:
sel rows = []
for row in data:

if int(row[1]) > 10:
sel rows.append(row)

Sorting
* sorted(seq) returns a list with values in seq

sorted in default order (<).
- We can sort the rows in a table.
- Reminder: comparison of sequences is

lexicographic.
* sorted(seq, key=fun) sorts value x by
fun(x).
def new order(row):

return −row[−1] # decreasing on last col

sd = sorted(data, key=new order)

Descriptive statistics

* min(seq);
* max(seq);
* mean (sum(seq) / len(seq));
* variance.
* No built-in function for median.

def median(seq):
if len(seq) % 2 == 1:

return sorted(seq)[len(seq) // 2]
else:

return sum(sorted(seq)[(len(seq)//2−1):(len(seq)//2+1)])/2

Visualisation
* The purpose of visualisation is to see or show

information – not drawing pretty pictures!
* Different kinds of plots show different things:
- barplot
- histogram or cumulative distribution
- scatterplot
- line and area plot

* Depends on relation between variables and
whether they are continuous or discrete.

* Choose your dimensions carefully.
* Label axes, lines, etc.

Matplotlib

* Matplotlib is a Python 2D plotting library, which
produces publication quality figures.

* “Matplotlib makes easy things easy and hard
things possible”.

* Documentation: matplotlib.org

matplotlib.org

Take home message
* Python is powerful in data analysis.
* Think carefully about visualisation: How can

people quickly interpret the results?
* We have only scratched the surface of

Matplotlib. Extensive documentation:
https://matplotlib.org or just google it.

* Other useful plotting libraries Seaborn (based
on Matplotlib and includes more complex plots
such as heatmaps); and Plotnine (based on a
“grammar of graphics” and similar to the R
ggplot graphics library).

https://matplotlib.org

