
COMP1730/COMP6730
Programming for Scientists

Exceptions and exception
handling



Lecture outline

* The exception mechanism in python
* Raising exceptions (assert and raise)
* Catching exceptions



Reminder: Kinds of errors: Bugs.
* 1. Syntax errors or type errors: the code is not

valid e.g. code is syntactically invalid, or is
syntactically valid, but you’re asking the python
interpreter to do something impossible. E.g.,
apply operation to values of wrong type, call a
function that is not defined, etc.

* 2. Semantic/logic errors: code runs without
error, but does the wrong thing (for example,
returns the wrong answer thus violating a
post-condition, or a function is called with
arguments violating a
pre-condition/assumption).



Reminder: Kinds of errors:
Run-time exceptional behaviour.
* 3. The following are exceptional behaviours that

even fully correct code may encounter
occasionally. Examples include: attempting to
open a file that does not exist;
or writing to a file and the hard disk fills up;
or user input is of the wrong format;
or a root-finding function cannot converge with
the limits passed in;
or a matrix inversion routine fails as the input
matrix is close to singular (non-invertible)



Error handling in scientific or
engineering code.
* Cases 1 and 2 above represent bugs in the

code that should be corrected using a full suite
of test functions and many assertions in the
code to detect violations of preconditions,
post-conditions and loop invariants. If such a
bug is only detected when running a final
experimental analysis then the correct response
is to halt the code with an obvious and complete
error message on the display or output log file.

* The correct python language construct to
handle errors of type 2 is the assertion
statement (discussed in previous lectures).



Error handling.

* Note: for a large data analysis e.g. running on a
large cluster you may consider checkpointing
the state at regular intervals so you don’t need
to restart from the beginning. Also, for certain
engineering or commercial applications
additional considerations on restarting the code
automatically on detecting a bug may be
important (e.g. on the Mars rover).

* Note: Case 1 cannot occur at run-time on a
strictly typed compiled language.



Error handling.

* Case 3 is the only situation where we might
want to detect the exceptional condition and call
the affected code after correcting the problem.

* For example, if our search range does not
enclose a root when calling a root-finding
function, our calling function can probe a new
part of the search space until all possible roots
are found.



Error handling. Case 3 cont’

* When calling a matrix inversion or factorization
routine, for a near-singular matrix we may call a
more numerically stable but slower function, or
may skip that data point.

* With bad user input, we may ask for the data to
input again.



Error handling.
For Case 3 our options are to:

1. return some distinguished value to indicate the
exceptional condition (e.g. return NaN for a
root-finder). This may not be possible if all
possible values may occur in the
non-exceptional state.

2. return a tuple with an extra value that is true if
the exceptional condition has occurred (may
also return extra info about the particular issue).

3. Throw an exception.



Exception names

* Exceptions are types (classes) derived from the
type Exception:
- e.g. ZeroDivisionError derives from
ArithmenticError derives from
Exception.

- ...and others.



* https://docs.python.org/3/library/
exceptions.html for full list of exceptions in
python standard library.

* Modules can define new exceptions by defining
new classes derived from Exception.

* e.g. LinAlgError in the numpy library (to be
covered next lecture).

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html


Lecture outline

* The exception mechanism in python
* Raising exceptions (assert and raise)
* Catching exceptions



Assertions
* assert condition, "fail message"
- Evaluate condition (to type bool)
- If the value is not True, raise an
AssertionError with the (optional)
message.

* Assertions are used to check the programmer’s
assumptions (including correct use of functions).

* Function’s docstring states assumptions;
assertions can check them.

* Although assertions are implemented with
exceptions in python, they should never be
caught and retried.



The raise statement
* raise ExceptionName(...)

- Raises the named exception.
- Exception arguments (required or optional)

depend on exception type.

* Can be used to raise any type of runtime error.
* Typically used with programmer-defined

exception types.

if root not found:
raise MyMathLibraryError(’root is not in input range’)



Reminder: Defensive programming

* It is better to “fail fast” (raise an exception) than
to return a nonsense result that will silently
affect or analysis.



Lecture outline

* The exception mechanism in python
* Raising exceptions (assert and raise)
* Catching exceptions



Exception handling
Catching exceptions allows us to retry or
otherwise handle exceptional conditions:
try:

block
except ExceptionName:

error−handling block

* Execute block.
* If no exception arises, skip error-handling
block and continue as normal.

* If the named exception arises from executing
block immediately execute error-
handling block, then continue as normal.

* If any other error occurs, fail as normal.



* An un-caught exeception in a function causes
an immediate end to the execution of the
function block; the exception passes to the
function’s caller, arising from the function call.

* The exception stops at the first matching
except clause encountered in the call chain
(this allows exceptions from multiple function
calls to be handled in one location in higher
level code).



def f(x, y):
try:

return g(x, x + y)
except ZeroDivisionError:

return 0

def g(x, y):
return x / y



When to catch exceptions?

* Never catch an exception unless there is a
sensible way to handle it (there is no sensible
way to handle syntax or type errors or logical
bugs in the code).

* If a function does not raise an exception, it’s
return value (or side effect) should be correct.
- Therefore, if you can’t compute a correct

value, raise an exception, or return an
indicator of the exceptional condition.



Advantages of exceptions

* Exceptions are difficult to ignore if the
exceptional condition occurs: if they are not
caught they cause the code to abort (unlike
returned error codes which are easy to fail to
check for).

* Allow multiple error returns to be caught and
handled in one place in higher level calling code
(unlike error codes which must be explicitly
checked for an propagated to higher calling
functions).



Disadvantages of exceptions

* Exceptions are slow when thrown (in principle
should have no or low cost when not thrown).

* They add a new invisible return path from
functions (this should be documented in
docstring) which may make the function more
difficult to understand: in particular, for functions
that throw exceptions from multiple return points
in the function it can be difficult to test all the
return possibilities.



Summary
* Consider:
- What runtime exceptional conditions can occur

in your code?
- Which should be caught, and how should they

be handled?
- What assumptions should be checked?

* Use assert to check violated assumptions.
* Use raise to throw an exception (or return an

error code) for a run-time exceptional condition
that may be handled by the caller.

* Never catch an exception unless there is a
sensible way to handle it.


