COMP1730/COMP6730

Programming for Scientists

Functions, part 2



Lecture outline

» Recap of functions and positional arguments
* keyword arguments
* default arguments



Functions (recap)

* A function is a piece of code that can be called
by its name.
* Why use functions?
- Abstraction: To use a function, we only need
to know what it does, not how.
- Readability.
- Divide and conquer — break a complex
problem into simpler problems.
- A function is a logical unit of testing.
- Reuse: Write once, use many times (and by
many).



Function definition

name parameters

def change_in percent (old, new):
4 iff = new - old

block
P2 eturn (diff / old) % 100 oc

* The function body is defined by indentation.

*» Function parameters are variables local to the
function body; their values are set when the
function is called.

* The def statement only defines the function
— it does not execute the function.



arguments
* To call a function, write its name followed by its
arguments in parentheses (this style of function
calling is using positional arguments):

change_in percent (485, 523)

» Order of evaluation: The argument expressions
are evaluated left-to-right, and their values are
assigned to the parameters; then the function
body is executed.

* return expression causes the function call
to end, and return the value of the expression.



arguments

* In python, it is also possible to specify
arguments by the formal parameter names, and
give them in arbitrary order (this style of function
calling is using positional arguments):

def change_in_percent (lastyear,
thisyear) :

change_in percent (thisyear = 523,
lastyear = 485)

If the function parameters are well named, this
can make the argument call self-documenting.



Function default arguments

* Trailing arguments can be given default values
that are used if no value is given at the function
call site. (These are called default arguments):

def change_in_percent (lastyear,
thisyear=100.0) :

change_in percent (lastyear = 485)
Library functions often have many arguments
with defaults so that common usage is easy, but
the function call can be customised if needed.
Be careful with mutable default arguments, as
they are assigned by reference, which can lead
to unexpected results.



Function call return value

* A function call is an expression: its value is the
value return’d by the function.

* |n python, functions always return a value: If
execution reaches the end of a function body
without executing a return statement, the
return value is the special value None of type
NoneType.

* Note: None-values are not printed in the
interactive shell (unless explicitly with print).



Guidelines for good functions

» Within a function, access only local variables.

- Use parameters for all inputs to the function.

- Return all function outputs (for multiple
outputs, return a tuple or list).

- ...except if the specific purpose of the function
is to send output elsewhere (e.g., print).

*» Don’t modify mutable argument values, unless
the specific purpose of the function is to do that
(and in that case document that the argument is
modified by the function).

* Rule #4: No rule should be followed off a cliff.



