
COMP1730/COMP6730
Programming for Scientists

Functions, part 2



Lecture outline

* Recap of functions and positional arguments
* keyword arguments
* default arguments



Functions (recap)
* A function is a piece of code that can be called

by its name.
* Why use functions?
- Abstraction: To use a function, we only need

to know what it does, not how.
- Readability.
- Divide and conquer – break a complex

problem into simpler problems.
- A function is a logical unit of testing.
- Reuse: Write once, use many times (and by

many).



Function definition

def change in percent(old, new):
diff = new - old
return (diff / old) * 100

name parameters

block
4

spaces

* The function body is defined by indentation.
* Function parameters are variables local to the

function body; their values are set when the
function is called.

* The def statement only defines the function
– it does not execute the function.



Function call with positional
arguments
* To call a function, write its name followed by its

arguments in parentheses (this style of function
calling is using positional arguments):
change in percent(485, 523)

* Order of evaluation: The argument expressions
are evaluated left-to-right, and their values are
assigned to the parameters; then the function
body is executed.

* return expression causes the function call
to end, and return the value of the expression.



Function call with keyword
arguments
* In python, it is also possible to specify

arguments by the formal parameter names, and
give them in arbitrary order (this style of function
calling is using positional arguments):
def change in percent(lastyear,
thisyear): ...

change in percent(thisyear = 523,
lastyear = 485)

* If the function parameters are well named, this
can make the argument call self-documenting.



Function default arguments
* Trailing arguments can be given default values

that are used if no value is given at the function
call site. (These are called default arguments):
def change in percent(lastyear,
thisyear=100.0): ...

change in percent(lastyear = 485)

* Library functions often have many arguments
with defaults so that common usage is easy, but
the function call can be customised if needed.

* Be careful with mutable default arguments, as
they are assigned by reference, which can lead
to unexpected results.



Function call return value

* A function call is an expression: its value is the
value return’d by the function.

* In python, functions always return a value: If
execution reaches the end of a function body
without executing a return statement, the
return value is the special value None of type
NoneType.

* Note: None-values are not printed in the
interactive shell (unless explicitly with print).



Guidelines for good functions
* Within a function, access only local variables.
- Use parameters for all inputs to the function.
- Return all function outputs (for multiple

outputs, return a tuple or list).
- ...except if the specific purpose of the function

is to send output elsewhere (e.g., print).
* Don’t modify mutable argument values, unless

the specific purpose of the function is to do that
(and in that case document that the argument is
modified by the function).

* Rule #4: No rule should be followed off a cliff.


