
COMP1730/COMP6730
Programming for Scientists

I/O and files

Outline

* Input and output
* Files and directories
* Reading and writing text files

Input and output

I/O: Input and Output
* A (common) way for a program to interact with

the world.
- Reading data (keyboard, files, network).
- Writing data (screen, files, network).

* Scientific computing often means processing or
generating large volumes of data.
2016, 07, 01, 2.0, 1, Y
2016, 07, 02, 0.0, 1, Y
2016, 07, 03, 0.0, 1, Y
2016, 07, 04, 0.0, , Y
2016, 07, 05, 4.4, 1, Y
2016, 07, 06, 15.4, 1, Y
2016, 07, 07, 1.0, 1, Y
2016, 07, 08, 0.0, 1, Y
2016, 07, 09, 4.2, 1, Y
2016, 07, 10, 0.0, 1, Y
2016, 07, 11, 10.4, 1, Y

⇒

Terminal I/O

* print(...) generates output to the terminal
(typically, screen).

* input(...) prints a prompt and reads input
from the terminal (typically, keyboard).
- input always returns a string.

input str = input("Enter a number: ")
input int = int(input str)

Im
ag

e
fro

m
P

un
ch

&
E

nb
od

y

Files and directories

What is a file?
* A file is a collection of data on secondary

storage (hard drive, USB key, network file
server).

* A program can open a file to read/write data.

* Data in a file is a sequence of bytes (integer
0 ≤ b ≤ 255).
- The program reading a file must interpret the

data (as text, image, sound, etc).
- python & the operating system (OS) provide

support for interpreting data as text.

Text encoding (recap)
* Every character has a number (an encoding):

ASCII is a simple encoding of each character
into a byte. Unicode is a superset of ASCII that
defines numbers (“code points”) for >140,000
characters (in a space for >1 million). Unicode
can encode many languages and emojiis. The
ASCII subset is commonly sufficient and used
for text-based scientific data formats.

Encoding
(UTF-8)

Font

Byte(s) Code point Glyph
0100 0101 (69) 69
1110 0010 (226)
1000 0010 (130)
1010 1100 (172) 8364

* For scientific datasets there are two major
formats:

* A text file contains (encodings of) printable
characters (including spaces, newlines, etc) and
numbers are saved as decimal text, which can
be examined using a text editor (e.g. csv and
FASTA files in genomics).

* A binary file contains arbitrary data, which may
not correspond to printable characters. Numeric
data is saved in binary. (e.g. zip file, BAM file in
genomics). Cannot be viewed in a simple text
editor, but typically saves storage space and
improves speed of access.

Directory structure
* Files on secondary storage are organised into

directories (a.k.a. folders).
* This is an abstraction

provided by the operating
system.
- It will appear differently on

different operating systems.
* The directory structure is

typically tree-like.

File path

* A path is string that identifies the location of a
file in the directory structure.

* Consists of directory names with a separator
between each; the last name in the path is the
name of the file.

* Two kinds of paths:
- Absolute
- Relative to the current working directory (cwd)

* When running a python file (script mode), the
current working directory (cwd) is the directory
where that file is.

* If the python interpreter was started in
interactive mode (without running a file), the
cwd is the directory that it was started from.

* The os module has functions to get (and
change) the current working directory.
>>> import os
>>> os.getcwd()
’/home/patrik/teaching/python’

Example: Posix (Linux, OSX)

* Single directory tree.
- Removable media and network file systems

appear at certain places in the tree.
* The separator is ’/’
* An absolute path starts with a ’/’

* ’..’ means the directory above.
* File and directory names are case sensitive.

/

home

lib

u123
Desktop
lab1
lab2

If the cwd is /home/u123/lab1
then

prob1.py refers to
/home/u123/lab1/prob1.py

../lab2/prob1.py refers to
/home/u123/lab2/prob1.py

../../../lib/libbz2.so
refers to /lib/libbz2.so

/home/u123/Lab1/prob1.py
does not exist.

Example: Windows
* One directory tree for each “drive”; each drive is

identified by a letter ("A" to "Z")
* The separator historically was ’\’ but modern

Windows OS allow ’/’ like UNIX. Note: ’\’
must be written ’\\’

* Absolute path starts with drive letter and ’:’

* ’..’ means the directory above.
* File and directory names are not case sensitive.
"C:\\Users\\patrik\\test.py"
"..\\lab1\\exercise1.py" or
"../lab1/exercise1.py"

Reading and writing text files

File objects
* When we open a file, python creates a file

object (or, more abstractly, “stream” object).
- The file object is our interface to the file: all

reading, writing, etc, is done through methods
of this object.

- The type of file object (and what we can do
with it) depends on the access mode specified
when the file was opened.

- For example, read-only, write-only, read-write
mode, etc.

Opening a file

* open(file path, access mode) opens a
file and returns the file object.
my file = open("notes.txt", "r")
first line = my file.readline()
second line = my file.readline()
my file.close()

* Must close the file when done.
* After calling file obj.close(), we can do no

more read/write calls on file obj.

Access modes
* access mode is a string, made up of flags.

if the file exists... if it does not exist...
r read only Error
w write only Erases file content Creates a new (empty)

file
a write only Appends new content

at end of file
Creates a new (empty)
file

r+ read/write Reads/overwrites
from beginning of file Error

w+ read/write
Erases file content

Creates a new (empty)
file

a+ read/write Reads/overwrites
starting at end of file

Creates a new (empty)
file

Binary access mode
* “b” should be added to the above mode strings

when reading or writing binary file formats. The
default “text” mode will automatically decode
unicode text encodings, and the
file obj.read() and file obj.write()
functions return or accept a string (str) with
characters large enough for the script used. In
binary mode these functions return and accept
a bytes type, which is an immutable type which
can be considered a restricted form of string that
consists of only 8-bit bytes, avoiding alteration of
data by misapplied unicode handling.

with statement

* As we saw in the csv example earlier in the
course, the with statement can simplify closing
files and is recommended in modern python
code (in the following slides we will explicitly
close files to demonstrate the close syntax).

import csv
with open("filename.csv") as csvfile:

reader iter = csv.reader(csvfile)
next(reader iter) # skip the header
data = [row for row in reader iter]

Caution

* Be careful with write modes. Erased or
overwritten files cannot be recovered.

* Can we check if an existing file will be
overwritten?
Yes
- os.path.exists(file path) returns
True or False.

- Catching exceptions (more later in the course).

Reading text files
* file obj.readline() reads the next line of

text and returns it as a string, including the
newline character (’\n’).

* file obj.read(size) reads at most size
characters and returns them as a string.
- If size < 0, reads to end of file.

* If already at end-of-file, readline and read
return an empty string.

* file obj.readlines() reads all remaining
lines of text returning them as a list of strings.

File position
* A file is sequence of bytes.
- But the file object is not a sequence type!

* The file object keeps track of where in the file to
read (or write) next.
- The next read operation (or iteration) starts

from the current position.
* When a file is opened for reading (mode ’r’),

the starting position is 0 (beginning of the file).
* File position is not the line number.

* Suppose "notes.txt" contains:
First line
Second line
last line

* Then
>>> fo = open("notes.txt", "r")
>>> fo.read(4)
’Firs’
>>> fo.readline()
’t line\n’
>>> fo.readlines()
[’Second line\n’, ’last line\n’]

Iterating through a file

* Python’s text file objects are iterable.
* Iterating yields one line at time.

my file = open("notes.txt", "r")
line num = 1
for line in my file:

print(line num, ’:’, line)
line num = line num + 1

my file.close()

Writing text files

* Access mode ’w’ (or ’a’) opens a file for
writing (text).

* file obj.write(string) writes the string
to the file.
- Note: write does not add a newline to the

end of the string.
* print(..., file=file obj) prints to the

specified file instead of the terminal.

Buffering

* File objects typically have an I/O buffer.
- Writing to the file object adds data to the

buffer; when full, all data in it is written to the
file (“flushing” the buffer).

* Closing the file flushes the buffer.
- If the program stops without closing an output

file, the file may end up incomplete.
* Always close the file when done!

Programming problem

* Read a python source code file, and
- print each line;
- prefix each line of code with a line number;
- for numbering, count only lines containing

code (not empty lines, or lines with only
comments).

Takehome

* File system is organised into directories and
files in a tree-like structure.

* File path uses ‘/’ (Linux, macOS or Windows)
(‘\’ separator can also be used in Windows).

* Python file object is iterable but not a sequence.
* Good practice: Write fileobj=open(’abc’)

and fileobj.close() immediately before
adding code in-between, or (better) use the
with statement.

